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Abstract—This paper proposes a multiresolution supervised
approach for the joint classification and fusion of panchromatic
and hyperspectral data. The approach combines a fully convo-
lutional network (FCN) and a hierarchical conditional random
field (CRF) for multiresolution feature extraction and fusion.
The goal of the proposed methodology is to produce a land
cover map at the fine spatial resolution of the panchromatic
channel, while integrating the rich spectral information of the
hyperspectral channels. The deep learning architecture consists
of a two-branch encoder, separately mining the spatial-spectral
information provided by the different input data, and a decoder
which performs the first multiresolution fusion. The posterior
probability estimates computed by the FCN at the panchromatic
and hyperspectral levels are further fused and modeled by a
multiresolution CRF model. This CRF approximates the behavior
of the ideal fully connected CRF in a computationally tractable
manner through a clustering step, with the aim of integrating
not only local but also long-distance spatio-spectral relationships.
The proposed technique has been applied to PRISMA data from
the Italian Space Agency for the land cover mapping of an area
in Emilia Romagna, Italy.

Index Terms—hyperspectral imagery, multiresolution fusion,
semantic segmentation, FCN, CRF

I. INTRODUCTION

Hyperspectral image classification is a highly investigated
area of remote sensing, for which several techniques providing
very accurate results have been developed over the course
of the years. In particular, several approaches for supervised
classification of hyperspectral data based on the analysis
of spatial and spectral information have been proposed [1-
11] employing different image processing techniques, such
as Markov random fields (MRFs), conditional random fields
(CRFs), dictionary learning, support vector machines, and
deep learning.

Unlike the classification of single-resolution hyperspectral
data, panchromatic-hyperspectral multiresolution classification
is a very new problem, not largely addressed in the literature so
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far. Panchromatic-multispectral classification techniques have
been developed through MRF-based approaches [12, 13], deep
learning [14], and pyramid representations [15], but with
reference only to sensors characterized by a limited number
of spectral channels. RGB-hyperspectral classification has also
been addressed through pyramidal models [16].

This paper proposes a method for the multiresolution
supervised classification of hyperspectral-panchromatic data,
with the goal of generating a classification map at the fine
spatial resolution of the panchromatic channel, while taking
advantage of the rich spectral information contained in the
hyperspectral channels. The resulting multiresolution fusion
problem is very promising from the point of view of the
extraction of thematic information, thanks to the opportunity
to benefit from both spatial and spectral information captured
by the two different sensors.

The proposed multiresolution fusion technique for classifi-
cation is based on deep learning and probabilistic graphical
models. Deep neural networks have proven to be greatly
effective in satellite image classification. Convolutional neu-
ral network (CNN) and fully convolutional network (FCN)
architectures are characterized by a multiresolution structure,
with convolutional and pooling layers [17]. This structure
typical of two-dimensional CNNs naturally extends to the
three-dimensional datacube associated with a hyperspectral
image. Such extensions make use of 3D (3D-CNN) or 1D con-
volutions along the channel set (equivalent to the wavelength
axis; 1D-CNN) [18].

The proposed method includes an FCN devoted to the
integration of the hyperspectral and panchromatic information
at the corresponding native spatial resolution, and to the
estimation of the posterior probabilities of the thematic classes,
given both the hyperspectral and panchromatic observations.
The network accounts for the first step of multiresolution
information fusion, which is then completed by the integra-
tion with the proposed multiresolution CRF. The proposed
method also aims to address, in the context of multiresolu-
tion panchromatic-hyperspectral classification, the challenge
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resolution lattice and with the A most similar clusters (colored circles), which are fully connected, and then connects the pixels at multiple resolutions.

of scarce training sets typical of realistic remote sensing
applications, by incorporating not only local but also long-
range spatial-spectral relations with the CRF. The developed
CRF model aims to approximate the behavior of an ideal fully
connected CRF, in a computational tractable way. A set of
clusters is computed on the two sets of posterior probabilities
estimated by the network at the multiple resolutions, each
cluster corresponds to a virtual node. The CRF characterizes
the interactions between (i) neighboring pixels at the same
resolution, (ii) virtual nodes in a fully connected mesh at the
same resolution, (iii) pixels and virtual nodes in a dedicated
neighborhood system at the same resolution, and (iv) parent-
child pixels at multiple resolution. The application of state-
of-the-art graph-based minimum energy algorithms, involving
graph cut [19], ensures convergence to solutions characterized
by strong optimality conditions.

The technique extends the previous method in [20] for the
classification of single-resolution RGB optical aerial images
with a spatial resolution of a few centimeters, to the classifi-
cation of multiresolution panchromatic-hyperspectral satellite
images, and the method in [21] through the hierarchical CRF.

II. METHODOLOGY

The proposed methodology performs multiresolution and
multispectral image data fusion for semantic segmentation
through a novel spatial-spectral neural network architecture
and a cluster fully connected multiresolution CRF (CFC-
MCRE, see Fig. 1). The focus is on panchromatic, X? &
R>HXW and hyperspectral, X" € ROm X5 x 5 acquisitions
(r is the spatial resolution ratio, and the ratios H/r and W/r
are assumed to be integer), with the goal of leveraging the
complementary strengths of high spatial resolution (panchro-
matic) data and rich spectral resolution (hyperspectral) data.

Overall, the methodology combines multiresolution data
fusion through a deep learning-based feature extraction, clus-
tering, and CRF-based long-range spatial dependencies mod-

eling, resulting in an effective framework for semantic seg-
mentation of panchromatic and hyperspectral data. A further
description is provided in the following subsections.

A. Spatial-spectral FCN architecture

The deep learning module is composed of an FCN [22] char-
acterized by a two-branch encoder and a decoder. The encoder
processes the panchromatic and hyperspectral information
separately: one branch focuses on the high spatial resolution
panchromatic data, X,, through a series of convolutions and
downsampling maxpooling layers, while the other handles the
high spectral resolution hyperspectral data, X, through 3D
pointwise convolutions followed by max pooling along the
spectral dimension. The 3D convolutions aim at extracting a
meaningful representation from the hyperspectral channels, to
benefit from its rich spectral content.

The features extracted from both branches are fused in a
bottleneck layer, which learns the combined representations
of spatial and spectral data. To ensure a match between
the two original spatial resolutions, the sequence of pooling
layers have an overall size which is a multiple of the original
resolution ratio. The decoder reconstructs the segmentation
map by progressively upscaling the features.

The network produces feature maps (FP and F") and pos-
terior probabilities (PP and P") at the native resolutions of the
panchromatic and hyperspectral channels. The set derived from
hyperspectral data processing is the output of the hyperspectral
branch of the encoder, whereas the set at the fine resolution
of the panchromatic image is the output of the decoder of the
network.

B. Cluster fully connected multiresolution CRF (CFC-MCRF)

In order to compute the virtual nodes at multiple resolutions,
a clustering through k-means is applied, separately, to the
multiresolution feature maps FP and F". This step effectively
joins similar pixels all over the feature maps in the same clus-
ter, thus allowing connections through points at any distance
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on the image itself. The result is two sets of clusters CP and C".
For each cluster ¢ in each of the two sets, the cluster feature
vector . € R™ is defined as the centroid of the cluster, and
the label y. € 2 (€2 being the set of thematic classes) is given
by the maximum of the posterior probability computed by the
neural network averaged over cluster c.

Let 77 and Z" be pixel lattices associated with the panchro-
matic and the hyperspectral images, respectively, and let S(i’)
be the patch of pixels at the fine resolution corresponding
to one pixel ' € Z" at coarser resolution. The proposed
multiresolution CRF model is a multiresolution extension of
the methodology proposed in [20], and the total energy is
defined as follows:

UP, VI xh) = gP(YP|xr) + MM Xt (1)
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where the first two terms are single resolution energy func-
tions corresponding to the cluster-based approximated fully
connected CRF (CFC-CRF [20]) at the panchromatic and the
hyperspectral resolutions, respectively, and the last term is a
further pairwise potential between the labels at the finer spatial
resolution (y;, i € S(i') C ZP) and the corresponding label
at coarser resolution (y;, i € I™). This further potential is
defined as a standard Potts model [23].

The random fields of observations and labels are X* =
{ff attier cecr and V* = {y}, Y’ tiez+ cecr, Tespectively.
The * represents the two possible different input lattices (x = p
or h) and f is the value of the corresponding feature map
extracted by the FCN on pixel ¢. It is important to note that,
while the pixelwise posterior probability may be different on
the two image lattices, the set 2 of thematic classes is the
same at both resolutions.

The two single resolution energy functions (the first two
terms of (1)) describe a CRF model with up to pairwise
nonzero clique potentials, approximating a fully connected
behavior through a clustering partition. The x has been omitted
in for brevity:
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D; and D, are the unary potentials for the pixel and cluster
layers, and are computed as the pixelwise log-posterior prob-
ability predicted by the FCN (the softmax). V;; is the pixel
pairwise potential and enforces spatial smoothness between
neighboring pixels, V.4 prompts similar clusters to be assigned

to the same class, and Vj. is the pixel-cluster pairwise poten-
tial. The pairwise potentials in equation (2) are defined by a
contrast-sensitive Potts potential [23] to favor consistency in
the labeling while simultaneously weighting on the similarity
among the corresponding features. v, &, and the A-terms are
weights to balance the contributions of each term.

The energy function is minimized through the o —
swap graph cut method [24] which decomposes a multiclass
inference problem in a sequence of binary ones. It converges
to a local minimum with strong optimality properties [24—26].

III. EXPERIMENTAL RESULTS
A. Dataset and experimental setup

The experimental validation was conducted with a dataset
acquired over Emilia Romagna, Italy, in mainly urban areas,
consisting of three PRISMA images collected in summer 2022.
The PRISMA acquisitions include a 5-m spatial resolution
panchromatic image and a 30-m spatial resolution hyperspec-
tral image with 234 spectral bands. Hence, the resolution ratio
is equal to 6. The ground truth was derived with a regional land
use archive!. The land cover classes correspond to different
vegetated areas (cultivated fields, low and high vegetation),
water bodies and built-up areas (buildings and roads). The
dataset was split into two disjoint subsets for training and
testing.

The parameters of the k-means clustering and the CRF are
experimentally set through trial and error and are reported in
Table I. The standard deviation o of the Gaussian kernel in
the contrast sensitive Potts pairwise potential is the median
Euclidean distance between all considered pairs of feature
vectors. The number h of nearest centroids (see Fig. 1) is
set to 4 to capture long-range information while keeping a
rather low computational cost. More details on the meaning
and setting of these parameters are presented in [20].

The proposed spatial-spectral FCN computes the unary
potentials — the posterior probabilities — at the two different
resolutions. Two different architectures were considered, both
deriving from a U-Net [27] architecture, with a double branch
encoder including channelwise spectral convolutions. One
presents a lower number of convolutional blocks and filters
(see Table II for the number of trainable parameters), in the
following, they will be referred to as FCN_A and (lightweight)
L-FCN_A\. The networks are trained on an RTX2080Ti GPU.

Thttps://geoportale.regione.emilia-romagna.it

TABLE I
PARAMETERS OF THE PROPOSED CFC-MCRF METHOD.
Parameter Panchromatic Hyperspectral
Azz (pixel pairwise) 2 2
Acc (cluster pairwise) 1 1
Azc (pixel-cluster pairwise) 1 1
~ (cluster unary) |ZP|/kP = 5625  |Z"|/k" = 2500
T (image patch) 600600 100x 100
k (number of clusters) 64 4
h (nearest centroids) 4 4
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Fig. 2. Test ground truths and classification maps for the test tiles in the PRISMA Emilia Romagna dataset. Original PRISMA Product and processed under

a license of ASI ©ASI (2022).

TABLE II
TEST-SET RESULTS FOR THE EMILIA ROMAGNA DATASET. PER-CLASS VALUES ARE RECALLS. OVERALL ACCURACY (OA), RECALL,
PRECISION, AND F1 SCORE ARE AVERAGED OVER THE CLASSES.

Architecture L0 oN crop soil NEVIRTSAN grass  bare soil _water | OA [ recall | precision | F1 score [ # trainable param.
FCN_X 81.30 81.97 78.07 8.37 26.51 27.53 | 77.54 | 50.63 67.91 58.00 17-108
L-FCN_\ 86.44 91.82 62.34 15.17 20.62 30.05 | 81.16 | 51.08 68.03 58.34 38104
FCN_AX + CFC-CRF [20] 81.57 82.12 90.48 18.95 26.52 49.40 | 80.97 | 58.18 65.52 61.63 17-108
L-FCN_X + CFC-CRF [20] 87.03 94.89 65.07 22.57 22.46 30.05 | 83.86 | 53.68 70.43 60.92 38104
FCN_) + CFC-MCRF 85.73 92.73 83.15 27.99 29.80 41.86 | 86.57 | 60.21 79.51 68.53 17-108
L-FCN_M\ + CFC-MCRF 83.98 96.91 81.15 14.80 31.95 4240 | 88.19 | 58.53 80.74 67.87 38-10%

B. Discussion

The results obtained on the PRISMA dataset are shown in
Fig. 2 and in Table II, in terms of recall for each class, overall
accuracy, and class-averaged recall, precision, and F1 score.

As can be seen from the results in Table II, the proposed
method, when combined with both neural architectures, ef-
fectively distinguishes the three primary land cover classes:
built-up areas (“built-up”) and vegetated areas (“‘crop soil” and
“trees”). The results are generally less accurate for the minor-
ity classes, “bare soil”, “grass” , and “water.” This is primarily
because the ground truth for this region is derived from a land-
use archive with a lower spatial resolution compared to the
original pachromatic resolution. Consequently, the minority
classes identified have few available training samples, leading
to less accurate classification results. Furthermore, the regional
archive dates back to 2020, causing a misalignment between
the nominal and effective extent of the land cover classes, in
particular for the ones subject to temporal changes (e.g., the
extent of low vegetation and water bodies). In general, the
results of L-FCN_\ are slightly more accurate.

The two networks were integrated with the proposed CFC-
MCRF and with the CFC-CRF proposed in [20]. The latter was
employed as a comparison technique. As it was formulated for
single resolution optical imagery, it was applied to a multiscale
single-resolution tensor constructed with the feature maps of
the panchromatic and the hyperspectral channels resampled at
a common spatial resolution (5 m) and undergoing feature
reduction. In both cases, the integration of the CRF, with
its ability to model both local and long-range spatial-spectral
relationships through pixel neighborhoods and clusters, re-
sulted in improvements in the accuracy of all considered
classes and in the average accuracies. In particular, higher
overall classification accuracies can be noted with the proposed

multiresolution CFC-MCREF, leading to an overall accuracy of
88%, precision of 80% and F1 score of about 70%, despite
the aforementioned issues remarked in the dataset.

Fig. 2 displays the classification maps obtained using the
two different neural networks with the addition of the CFC-
CRF in [20] and the proposed CFC-MCRF. The results
obtained by the method closely reflect the ground truth,
particularly for the majority classes, with no significant over-
smoothing or evident false alarms (except for the class “grass”
with the FCN_A + [20]). Notably, the proposed method
demonstrates its ability to generate classification maps where
the spatial boundaries between classes are well-defined.

IV. CONCLUSION

This paper presented a supervised method for the joint
fusion and classification — or semantic segmentation — of
panchromatic and hyperspectral images. The proposed method
combines FCNs and a multiresolution cluster level fully con-
nected CRF to model the spatial and spectral information
provided by the multiresolution and hyperspectral input data
and to generate a classification map at the finer of the two
observed spatial resolutions.

The experimental validation was conducted with PRISMA
images for the land cover mapping of a mainly urban zone. The
results suggest the effectiveness of the proposed technique in
fusing and classifying hyperspectral-panchromatic imagery at
the finest spatial resolution. In particular, the integration of the
proposed CRF improves classification accuracy, as compared
to using a purely neural model.

While the proposed architecture achieves accurate overall
results, the discrimination of minority classes still remains a
challenge in datasets with limited training samples or outdated
ground truth data. Future work will focus on improving the
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robustness of the framework against such issues, integrat-
ing more advanced contextual models, and exploring semi-
supervised techniques to address sample scarcity.
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