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Abstract—Unsupervised classification of satellite image time
series (SITS) is prominent in numerous multitemporal remote
sensing applications. However, when optical images are con-
cerned, a missing value reconstruction task becomes pivotal, due
to the impact of cloud cover on the input SITS. This task is
usually addressed as a pre-processing step before feeding the time
series to a clustering model. In this paper, we propose a pixel-
wise SITS clustering algorithm which integrates missing value
imputation jointly with the clustering task. Moreover, the clus-
tering process is designed to jointly perform both representation
learning and cluster assignment, enabling the proposed model
to simultaneously tackle three duties (missing value imputation,
representation learning, and cluster assignment), while being
trained in an end-to-end manner. The experimental results show
that the proposed model performs well compared to other models
that address time series imputation and clustering independently.
Furthermore, a visualization analysis suggests that the proposed
model learns both the imputation and clustering effectively
despite being trained simultaneously.

Index Terms—satellite image time series, missing values impu-
tation, gap filling, time series clustering, joint optimization

I. INTRODUCTION

SITS classification plays an important role in the field of
remote sensing, as not only spatial and spectral information but
also the temporal dynamics of the observed surface are taken
into account in the labeling process. Prominent applications
of SITS classification include land cover mapping, crop type
classification, or forest inventory [1], [2]. Yet, in real-world
satellite image classification tasks, the amount of ground truth
data is most often limited, hence unsupervised classification
(or clustering) of SITS becomes increasingly in demand.

Pixel-wise SITS clustering fundamentally shares the same
goal as a general time series clustering task whose perfor-
mance is affected by two aspects. The first one is how the
gaps or missing values are handled. When optical imagery
is used, SITS critically suffers from missing values, usually
due to cloud coverage or shadows. The process to fill in the
missing values in time series data is commonly called with
several terminologies, such as gap filling, missing value/data
imputation or reconstruction, time series imputation, etc. To fill
the gaps, a common but sometimes simplistic approach is to
use linear or piecewise interpolations [3]. More sophisticated
approaches make use of splines or of neural models [4], [5].
In all such cases, missing data reconstruction is typically
addressed separately from the clustering algorithm that will

process the imputed data afterwards. The second factor is
the choice of the clustering model itself. Specifically, when
deep clustering solutions are adopted, there exist two main
approaches in building the clustering model. The first one is
to use deep learning architectures, such as Autoencoders (AE),
Variational Autoencoders, or Graph Neural Networks, to learn
a feature representation, and then, to apply a traditional clus-
tering algorithm (e.g., k-means or Gaussian Mixture Model–
GMM) to the learned feature space [6]. The second family of
approaches optimizes feature learning and cluster assignment
simultaneously [7], [8]. Deep Embedded Clustering (DEC) [8]
is among the best-known clustering methods that employ the
latter approach to deep clustering. However, DEC does not
model the possible presence of missing data per se, hence its
performance is generally affected in the case of time series
data with missing values. A possible approach to minimizing
the bias that may come from the choice of the combination of
arbitrary separate methods for imputation and clustering is to
develop an end-to-end formulation to train both tasks simulta-
neously [9], [10]. In this context, the Clustering Representation
Learning on Incomplete time-series data (CRLI) method [10]
aims at learning both missing value imputation and feature
representation, whereas cluster assignment is still done after
the training process by applying k-means in the learned feature
space. In the present paper, we propose a novel deep model
that addresses jointly: (1) missing value imputation in SITS
data, (2) feature representation, and (3) cluster assignment, all
at once. For this purpose, the information-theoretic approach to
deep clustering of DEC and the generative adversarial strategy
to gap filling of CRLI are integrated into a unique framework.

II. PROPOSED METHODOLOGY

This section introduces the proposed model that jointly
addresses time series imputation, to fill the missing values
in the input SITS, as well as deep representation and cluster
learning in an end-to-end manner. Fig. 1 shows the overall
architecture of the proposed model. The input data consists
of a SITS X stacking T well-registered single-channel (i.e.,
grey-scale) images. The extension to multichannel imagery is
straightforward. It is convenient to assume X to be flattened
out as X = {X1, X2, ..., XN}, where N is the number of
pixels and Xi ∈ RT collects the intensities of pixel i along the
T observation times (i = 1, 2, . . . , N ). A corresponding set of
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Fig. 1: The overall architecture of the proposed model.

masks specifying where the missing values are in each pixel
M = {M1,M2, ...,MN}, is also assumed available. Here,
Mi ∈ {0, 1}T indicates the position of missing and available
values with 0 and 1, respectively.

Being inspired by [10], the proposed model mainly contains
two components: (1) the time series imputation part that is
responsible to restore the gaps of the time series, and (2)
the clustering part which learns deep feature representation
and cluster center altogether. Part (1) adopts a generative-
adversarial approach. The input data are first fed into a
generator where the imputed time series is produced. The
imputed series is then passed both to a discriminator and to
part (2), which handles the clustering task. The goal of the
discriminator is to detect where missing values are located in
the imputed time series produced by the generator, whereas
the goal of the generator is obviously to hinder this detection.
The clustering part (2) adopts an encoder-decoder structure
that generalizes the DEC approach [8].

A. Time Series Imputation

The generator employs a bidirectional Recurrent Neural
Network (RNN) that is modified based on [10] to be able
to receive the time series input with missing values. Let the
time series in a generic pixel location be (x1, x2, ..., xT ), and
its corresponding mask be (m1,m2, ...,mT ). The output of
the previous time step x̂t−1, the modified input at the current
time step ut, which replaces the original input xt if its value
is missing, and the hidden state at the current time ht in the
RNN are modified as follows (t = 1, 2, . . . , T ):

x̂t−1 = Wimpht−1 + bimp, (1)

ut = mtxt + (1−mt)x̂t−1, (2)

ht = tanh(Whht−1 +Wxut + b), (3)

where Wimp, bimp, Wh, Wx, and b are learnable parameters,
ht−1 refers to the hidden state of the previous time step, and
mt is the mask value of current time step. The output is the
time series (x̂1, x̂2, ..., x̂T ).

In the case of a bidirectional RNN, which is utilized as the
generator of the proposed model, (x̂1, x̂2, ..., x̂T ) is defined
to be the output obtained by processing the sequence in its
own natural order, while we denote as (x̂′

1, x̂
′
2, ..., x̂

′
T ) the

output resulting from processing in the opposite direction (i.e.,
reversing the original sequence to be fed as input). The final
imputed time series is defined as

( x̂1+x̂′
1

2 ,
x̂2+x̂′

2

2 , ...,
x̂T+x̂′

T

2

)
.

In order to minimize the difference between the imputed
values for the non-missing data and the original ones, the
prediction loss of the generator is defined as:

Lpre =
1

N

N∑
i=1

||(Xi − X̂i)⊙Mi||22, (4)

where ⊙ indicates element-wise product. The imputed time
series X̂i is passed to the discriminator whose task is to predict
a mask as close as possible to the original mask Mi. Similar
to [10], the discriminator of the proposed model utilizes a
multilayer RNN with a sigmoid function on the output for
each time step. On each pixel i, the output of the discriminator
is a vector Di ∈ {0, 1}T (i = 1, 2, . . . , N ).

B. Representation and Cluster Center Learning

The component of the proposed model that is in charge
of clustering, receives the imputed time series X̂i produced
by the generator, and replaces the missing values in Xi by
the imputed ones, i.e., it computes X̃i = Mi ⊙ Xi + (1 −
Mi)⊙ X̂i (see Fig. 1). For clustering purposes, we use an AE
as the feature extractor. Specifically, the loss term associated
with the clustering task is derived from DEC [8]. Denoting
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the number of clusters as K, it is the Kullback-Leibler (KL)
divergence between a soft assignment qij of each pixel i to
cluster j and an auxiliary distribution pij (i = 1, 2, . . . , N ; j =
1, 2, . . . ,K):

Lcluster = KL(P ||Q) =

N∑
i=1

K∑
j=1

pij log
pij
qij

, (5)

where:

qij =
(1 + ||Zi − µj ||2)−1∑
j′(1 + ||Zi − µj′ ||2)−1

, pij =
q2ij/fj∑
j′ q

2
ij′/fj′

. (6)

Zi = fencoder(X̃i) is the transformed feature vector in the
embedding space of the AE, µj is the center of cluster j, and
and fj =

∑
i qij represents a soft measure of the size of cluster

j. This loss function guides the model to optimize both the
AE parameters and cluster centers at the same time. To favor
consistency, a loss term for the reconstruction between the
input of AE, X̃i and the output of the decoder fdecoder(Zi),
is also included:

Lrec =
1

N

N∑
i=1

||(X̃i − fdecoder(Zi))⊙Mi||22. (7)

Before the training of the whole model, we freeze all
components of the model but the AE part, and train only that
part to determine the initial AE parameter vector θ, and the
initial cluster centers {µj} (we refer this stage to as AE pre-
training). For this initialization purposes, first, the original data
are used after filling in the gaps through an average imputation
of the existing data. Then, k-means is applied to the resulting
data, and the cluster centers are transformed to the embedding
space of the pre-trained AE.

C. Overall Loss Function and Adversarial Training

The generator, together with the clustering term, and the
discriminator are trained using an adversarial strategy to
favor that the generator produces a reliable time series to be
accurately clustered. Accordingly, the discriminator learns to
differentiate between generated and original data through the
following loss term:

Ldis = −
1

N

N∑
i=1

[Mi⊙log(Di)+(1−Mi)⊙log(1−Di)], (8)

while the generator tries to ”fool” the discriminator by mini-
mizing the loss term:

Lgen =
1

N

N∑
i=1

(1−Mi)⊙ log(1−Di). (9)

The training is done by alternately updating the parameters
of the discriminator based on Ldis and the other parts of the
model based on the total loss function defined by:

Lrmn = Lpre + Lrec + Lcluster + Lgen. (10)

The overall training procedure is described in Algorithm 1.

Algorithm 1: Training Step
Input: Time series dataset with missing values X ,

Missing values mask M, Number of clusters
K, Number of batch batch, Number of interval
interval, and Maximum iteration MaxIter

Output: Clustering result
1 θ, {µj} ← Pre-train AE
2 Load θ, {µj} as the initial AE parameters and cluster

centers
3 for iter ← 1 to MaxIter do
4 Forward batch number of data to the network
5 Optimize discriminator based on Eq 8
6 Fix discriminator, optimize generator and AE

based on Eq 10
7 if iter % interval == 0 then
8 Re-calculate auxiliary distribution pij for

Lcluster based on Eq 6

III. EXPERIMENTAL RESULTS

A. Dataset and Implementation Details

The proposed model was experimented in a crop clas-
sification task by clustering one-year-long SITS composed
of images of the vegetation index called Fraction of Pho-
tosynthetically Active Radiation (FPAR), into two different
crop classes: summer and winter crops. The experiments
were conducted on the whole Italian territory using as input
the FPAR product of the VIIRS (Visible Infrared Imaging
Radiometer Suite) satellite sensor (1 km spatial resolution).
To validate the performance of the model, the clustering
task was run separately on the stack of FPAR products in
2018, 2021, 2022, and the clustering results were compared
to publicly available crop maps1: Joint Research Centre (JRC)
EUCROPMAP 2018 [11], ESA WorldCereal 2021 [12], and
JRC EUCROPMAP 2022 [13]. We downsampled all validation
maps to have the same spatial resolution as the input data
by taking the most frequently occurring value. All pixels
belonging to the non-crop classes in the validation maps were
masked out, and the crop classes in those benchmark maps
were categorized as either winter crop or summer crop for the
purpose of validation. It is worth mentioning that the validation
maps used in this study are not ground truths, but analysis
products utilizing remote sensing imagery. The considered
benchmark maps come from supervised classification and
were validated in the literature [11]–[13], hence they can be
considered as a significant reference. Yet, they are not ground
truths in a strict sense. Moreover, in each benchmark map, we
only assigned crops that certainly correspond to either winter
or summer crops, to ensure that the reference used for testing
is reliable. We compare the proposed model’s performance:
(i) with DEC by first imputing the missing values in the input

1https://data.jrc.ec.europa.eu/collection/id-00346,
https://zenodo.org/records/7875105
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TABLE I: The comparison of the proposed method with
one method that does manual imputation but learns feature
representation and cluster assignment at once (DEC), and
another method that optimizes missing values imputation and
representation learning simultaneously but applies k-means
afterwards (CRLI). The numbers indicate the averaged ac-
curacies of three runs of experiments on each method. Bold
indicates the best result.

Method 2018 2021 2022
Mean inputation + DEC 84.08% 89.49% 90.59%

CRLI 66.22% 60.56% 67.89%
Proposed method 92.61% 95.56% 90.19%

time series by averaging the available data; and (ii) with CRLI,
which addresses end-to-end imputation and uses k-means for
clustering. It is worth noting that, the compared DEC model
is slightly modified from the original paper. The modification
involves using an AE, instead of a stacked AE, and omitting
the layer-by-layer training procedure, which favors a reduced
computational burden and was experimentally shown to be
effective2.

For the proposed model, we utilize a single-layer bidirec-
tional RNN with the hidden state dimension of 5 for the
generator, and a 5-layer RNN with the order of the number of
units: 32− 16− 8− 16− 32, as the decoder. Gated Recurrent
Unit (GRU) [14] is used in both generator and decoder, to
minimize the risk of having vanishing gradients and to use less
memory than with the LSTM unit. The number of clusters is
set to 2. The dense layer in AE is fixed to 30−20−10−20−30
and the dimension of the embedding is 5. For the AE pre-
training, we set the batch size to 1000 and train for 100
epochs. During the pre-training process, the learning rate is
set to 0.1, and the AE is optimized using Stochastic Gradient
Descent (SGD) with momentum 0.9, based on a Mean Squared
Error (MSE) loss (this MSE loss is used exclusively for this
pre-training stage). The network is initialized using Xavier
initialization [15]. We set maximum iteration to 3000, and
interval to 140. Batch size is 1000. We utilize Adam as the
discriminator’s optimizer, and SGD to optimize the remaining
parts of the model. The optimizers use the initial learning rate
of 0.01. We implement the model using PyTorch, and run
the experiments on Intel Core i7-14700F 2.10 GHz CPU, and
NVIDIA GeForce RTX 4090 24G GPU.

B. Results and Discussion

Table I shows the comparison of the averaged overall
accuracies of three runs, between the proposed model, DEC
with average-based imputation, and CRLI with k-means. The
proposed model outperforms the other two models with respect
to the 2018 and 2021 benchmark maps, reaching 92.61% and
95.56%, respectively. Compared to DEC, the proposed ap-
proach yields accuracy increases of approximately 8% and 6%.
In the case of the 2022 validation map, the proposed method
has slightly lower accuracy than DEC, but the two results
are very similar and the accuracy difference is only 0.4%. In

2https://github.com/XifengGuo/DEC-keras

Fig. 2: Visualization of the learned representation in the
AE’s embedding space as the iteration during the training
progresses (2022 data). Blue and pink denote the two clusters.
The separation between clusters becomes clearer as iteration
increases, indicating effective learning of the model.

particular, the proposed model obtains high accuracies, greater
than 90%, in all considered years, also outperforming CRLI
with quite large margins.

Fig.2 shows how the features in the latent space of AE of the
proposed model behave during the training. The visualization
illustrates randomly chosen 500 data points from each class,
and the first two dimensions of the latent space are being
shown. It can be observed that at the beginning of the training,
we can visually distinguish the two classes, but the data points
that belong to the same class seem scattered, thus suggesting
that the intra-class variance is still large. As the iterations
proceed, it can be seen that the samples from the same class,
start to congregrate, and finally, the distance between the two
classes grows bigger when the training is close to the end.
This suggests that both representation learning and cluster
assignment in the proposed joint model work effectively.

The visualization of the dynamics of time series imputation
during the training in the proposed model is shown in Fig.3.
The generator produces a new time series, which is indicated
by the gray dashed lines and which we use to impute the
missing values (blue dots) in addition to the original data
(red dots) as the input to the clustering part of the proposed
model. In the early stage of the training, we can observe that
the imputation tends to be flat in all missing positions, but
as the training progresses, the imputation captures well the
trend we can see visually in the available time series data.
This trend is consistent with our expectation as the summer
crops (upper row of the images) show a peak in summer
months (August is around 30 on the x-axis), while winter crops
(lower parts of each image) have a peak earlier in time. This
observed dynamics suggests that the missing value imputation
performed by the proposed model works effectively.
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Fig. 3: The revolution of a time series sample from each cluster as the training progresses. The x-axis and y-axis represent the
time and the input (FPAR) values, respectively. The generator is trained to create a time series (gray dashed line) to fill the
missing values (blue dots) that exist in the original data (red points). As the training proceeds, the generator produces time
series that fits the original data better, hence more suitable values for the gaps.

IV. CONCLUSIONS

In this paper, we propose an end-to-end clustering method
for unsupervised SITS classification with missing data, which
learns gap reconstruction, feature representation, and clus-
ter assignment simultaneously. The experimental results in
a challenging case study associated with crop mapping at
the national scale suggest that the proposed joint end-to-end
approach is effective and outperforms previous models that
address either gap filling or clustering separately. A visual
analysis of the behavior of the proposed method in terms of
clustering and imputation confirms that the considered tasks
are effectively addressed at once.

Future work may include generalizing the clustering com-
ponent of the proposed model in order to omit the pre-training
step, as well extending to other applications of SITS analysis.
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