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Abstract—Sparse multiple-input multiple-output (MIMO)
radar imaging systems provide high-resolution reconstructions
with reduced hardware complexity, finding broad applications
ranging from medical imaging to security. The image quality
of these systems heavily depends on both the array design and
the reconstruction algorithm used. While existing approaches
usually treat these components separately, we propose a novel
framework to jointly optimize MIMO array configurations and
reconstruction algorithms. This joint optimization, performed in
an end-to-end manner, leads to MIMO imaging systems specif-
ically optimized for enhanced reconstruction quality. Through
numerical simulations for a large-scale near-field microwave
imaging application, we show that our approach consistently
outperforms commonly used sparse arrays across various re-
construction methods.

Index Terms—MIMO radar imaging, end-to-end optimization,
deep learning, computational imaging.

I. INTRODUCTION

Radar imaging systems find extensive use in diverse fields,
including environmental monitoring, medical diagnostics, se-
curity screening, through-wall imaging, and non-destructive
evaluation [1], [2]. Traditional radar systems typically rely on
densely populated arrays with closely spaced antenna elements
to avoid grating lobes and achieve high-resolution images.
In such monostatic designs, cross-range and down-range res-
olutions are fundamentally limited by antenna aperture and
bandwidth. Achieving higher resolutions thus necessitates in-
creased hardware complexity and cost, making these systems
less practical for cost-sensitive or large-scale applications such
as autonomous vehicles.

Sparse multiple-input multiple-output (MIMO) arrays have
emerged as promising alternatives for high-resolution radar
imaging, providing advantages in reduced hardware complex-
ity, lower cost, and faster data acquisition [3], [4], [5], [6], [7],
[8]. Unlike traditional monostatic arrays, sparse MIMO con-
figurations spatially distribute transmit and receive antennas,
resulting in significant decrease in system complexity. While
various sparse array topologies have been proposed, traditional
array design methods often focus on indirect performance
metrics, such as the point-spread function or virtual array
distribution [9], [4], [10], [11], [12], [13], [14], [15]. Since
existing design approaches do not explicitly incorporate the
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final image quality into the optimization process, they typically
do not explicitly optimize the image quality achieved with
these imaging systems.

Radar imaging inherently requires solving an ill-posed in-
verse problem to reconstruct the complex-valued reflectivity
of the scene from sparse measurements. Consequently, image
reconstruction quality strongly depends on both the antenna
array topology and the reconstruction method employed. How-
ever, existing research typically focuses on either optimizing
the array design or improving image reconstruction algorithms,
without jointly addressing both aspects [4], [10], [8], [11],
[16], [17], [18], [19].

Recently, inverse-theoretic methods emerged to explicitly
incorporate image reconstruction quality in array optimization.
For instance, Bayesian estimation framework was used to opti-
mize antenna positions using a greedy selection algorithm [8],
and compressed sensing-based methods were employed to
obtain a binary sampling pattern for antenna positions [17],
[16]. However, while these methods optimize arrays to im-
prove the imaging performance of specific reconstruction
algorithms, they still lack a fully data-driven, end-to-end (E2E)
optimization framework.

Recent advancements in computational imaging have shown
that joint optimization of system design parameters and recon-
struction methods significantly improves performance across
various imaging domains [20], [21], [22], [23], [24]. Such
end-to-end (E2E) frameworks successfully enhanced imaging
quality by simultaneously optimizing the imaging hardware
and software in diverse fields, including spectral imaging,
microscopy, medical imaging, and seismic imaging [21], [23].
However, there is limited work on jointly optimizing both the
MIMO array and the reconstruction method in a data-driven
end-to-end fashion [25], especially for large-scale 3D radar
imaging with flexible reconstruction methods and 2D aperture
configurations.

In this work, we propose a general and efficient framework
for end-to-end optimization of MIMO antenna arrays and
image reconstruction algorithms for radar imaging. By formu-
lating differentiable computation graphs of the complete imag-
ing pipeline, from measurement simulation to reconstruction,
we leverage gradient-based optimization methods to jointly
optimize antenna configurations and reconstruction algorithms.
We validate our framework on a 3D near-field microwave
imaging scenario using different reconstruction methods and
large synthetic dataset. Experimental results demonstrate that
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our optimized MIMO arrays consistently outperform common
sparse array designs, highlighting the importance of joint
optimization for enhancing radar imaging quality.

II. OBSERVATION MODEL

This section describes a general observation model for
MIMO radar imaging, applicable to both near- and far-field
scenarios. A sample observation geometry is given in Figure
1. As depicted, a planar MIMO array is placed at z = 0, con-
sisting of spatially distributed transmit and receive antennas
whose configurations will be optimized. Each transmit antenna
sends a radar pulse and the scattered field is then captured by
all receive antennas.
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Fig. 1: Sample Observation Geometry

Antenna Array

Under the Born approximation, the scattered field measured
by the MIMO radar system can be formulated as follows [26],
[19]:

jk(d rp,r)+d(rg,r))
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where y(rr,rg, k) denotes the frequency-domain measure-
ment obtained using a specific transmitter-receiver pair located
at rp and rg, respectively, and s(r) represents the discretized
reflectivity distribution of the scene at voxel r = [z,y, 2|7
The function p(k) is the temporal Fourier transform of the
transmitted pulse with & = 277’ f denoting the frequency-
wavenumber, f denoting the temporal frequency, and ¢ denot-
ing the speed of light. Distances from a given voxel r to trans-
mit and receive antennas are defined as d(rp,r) = ||[rp —r||2
and d(rg,r) = ||rg — r||2 respectively. The attenuation factor
1/(d(rgr,r)d(rr,r)) drops in the special case of far-field
imaging.

This discrete observation model can be compactly written
as

6]
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where s € C¥ is the discretized reflectivity vector with N
denoting the number of image voxels, and y € CM are the
corresponding noisy measurement vector acquired at different
antenna locations and frequency steps with M denoting the
total number of measurements. The measurement matrix A €
CMxN has entries given by

e—jk,m((i(!‘Tm 7rw,)+d(rRm 71‘71,))
Am;ﬂ = p(km

3)

A d(rr, ,ry) d(rR,,,Tn)

which indicates the contribution of the nth voxel, located
at r,, to the mth measurement taken with the antenna pair
(rr,.,rR,,) at frequency 5>-k,. The additive noise vector
w € CM is modeled as white Gaussian, which is typically
a valid assumption in realistic scenarios. Thus, each entry
of w has independent and identically distributed Gaussian
characteristics with variance 2. Each measurement indexed
by m corresponds to a unique comblnatlon of transmitting and
receiving antenna locations and frequency step. Additionally,
each voxel indexed by n refers to a distinct position within
the discretized three-dimensional scene.

III. DEVELOPED METHOD

This section presents our proposed framework for jointly
optimizing the MIMO array configuration and imaging algo-
rithm. In this joint optimization approach, our goal is to simul-
taneously optimize the array parameters, u, together with the
parameters of the imaging algorithm, 6. The joint optimization
problem is formulated as a constrained minimization:

0, = arg II&IHZ —L(s,8) 4)

subject to 8§ =Dy , (A s+W), p€Q

where x denotes a training dataset of size IV, consisting of
reflectivity images. The function L(-,-) is the cost measuring
the fidelity of the reconstructed reflectivity § to the ground
truth s. Additionally, A, denotes the measurement matrix
parametrized by the array design parameters p, and the image
reconstruction is performed via algorithm Dg ,(y) whose
parameters are denoted by 6. The constraint set for the antenna
parameters is denoted by (2.

Learning-based reconstruction methods generally have mil-
lions of parameters, making second-order optimization meth-
ods computationally prohibitive. To handle this large-scale
optimization problem efficiently, we employ the first-order
Projected Gradient Descent (PGD) method [27]. The iterative
update rules for PGD are given by:

Ot =0 —mp ( L(s ) (5)
aar | v, 256
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where 7, and 74 are the step sizes for array and algorithm pa-
rameter updates, respectively.The projection operator Projg,(+)
onto the array constraint set (2 is defined as:

Projo (7)) & argmin||fi — pf|> st. p € Q. (7)

This operator corresponds to the proximal mapping enforcing
antenna array constraints. For instance, when optimizing an-
tenna positions, ) represents the allowed aperture area, and
the projection operator corresponds to correcting the positions
of antennas if they lie outside the predefined aperture area by
assigning the closest point inside the aperture to its position.
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The iterative optimization defined by (5) and (6) is im-
plemented in the PyTorch environment, utilizing automatic
differentiation for efficient gradient computation. The block
diagram illustrating the computation graph constructed for
automatic differentiation is provided in Figure 2.

Optimized Parameters
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Fig. 2: Block diagram for E2E optimization. Solid lines denote
the differentiated path for back-propagation.

IV. RESULTS

We demonstrate the effectiveness and versatility of the
developed joint optimization framework for 3D microwave
imaging. In our simulations, we consider an imaging volume
of 30 cm x 30 cm x 30 cm located 50 cm away from
the antenna array. Given a predefined square-shaped antenna
aperture of width 30 cm, we optimize positions of transmit
and receive antennas jointly with the reconstruction algorithm.
The operating frequency is swept from 4 to 16 GHz with 15
steps. Accordingly, the voxel sizes along z, y, and z directions
are set to 1.25cm, 1.25cm, and 0.625cm respectively, to
closely approximate the theoretical resolution expected for the
non-compressive case [26]. This discretization results in an
imaging volume of 25 x 25 x 49 voxels.

For sparse MIMO array optimization, the total antenna
count is fixed as 25 to explore different numbers of transmit
and receive antennas (N7, + Nr, = 25). The highest number
of measurements, and therefore lowest compression ratio,
occurs when the number of transmit and receive elements,
ie. Ny, and Ng,, are approximately equal. We explicitly
compare our optimized arrays with some commonly used
arrays [4], such as the the Mill’s cross array (MCA) with
12 transmit and 13 receive antennas along diagonals, uniform
rectangular (URA) and ring spiral (RSA) arrays with 9 trans-
mit and 16 receive antennas.

Measurements are simulated on synthetic datasets of 3D
extended targets from [28], consisting of 800 training, 100
validation, and 100 test samples. Each reflectivity voxel in-
cludes random phase to mimic practical imaging conditions.
Measurements include additive white Gaussian noise, with
SNR levels randomly selected in each optimization iteration
between 0 and 30 dB.

Considering varying computational demands across appli-
cations, we perform joint optimization with different imag-
ing methods, including traditional direct inversion, regular-

ized unrolling-based methods, and deep learning approaches.
Specifically, we select:

¢ Kirchhoff migration (KM) [29], a parameter-free baseline
method involving direct inversion.

o An unrolled ¢; regularization-based method (U-¢;) [30],
[31], [32], where step sizes and soft-threshold parameters
are optimized for L = 3 unrolling steps, totaling 6
parameters.

o Deep2S [28], a deep learning-based reconstruction
method where the parameters are the weights of the em-
ployed neural network architecture, comprising 1,356,641
parameters.

The cost function in (4) is chosen as the mean squared
error computed on normalized magnitudes of reflectivity im-
ages. To enhance computational efficiency, we substitute the
gradient descent steps with a single iteration of the Adam
algorithm [33], set the batch size to 16, and train for up to
2000 epochs, employing early stopping when validation loss
stagnates for 50 epochs.

For Deep2S, neural network weights (1,356,641 parameters)
are trained jointly with antenna parameters. Initial learning
rates are set as 10~2 for antenna parameters and 103 for
the neural network weights. For the U-¢; method, separate
initial learning rates are chosen for step-size (10~°) and soft-
threshold parameters (10~%). A learning rate scheduler reduces
the learning rate by a factor of 10 upon stagnation of validation
loss. Joint optimization takes approximately 2 hours on a
NVIDIA GeForce RTX 3080 Ti GPU using PyTorch 1.12.0
with CUDA Toolkit 11.6.0 in Python 3.10.6.

To analyze the performance of jointly optimized arrays
for various transmitter/receiver configurations, we consider
Nr, + Ng, = 25 and vary the number of antennas from
(N7g, Npz) = (1,24) to (12,13) since configurations with
N7, > 12 are redundant due to array symmetry. Optimization
is performed separately for KM, U-¢;, and Deep2S reconstruc-
tion methods. Average test performance over measurement
SNRs from 0 dB to 30 dB is shown in Fig. 3 as a function of
number of transmitters used in the design, alongside baseline
arrays MCA, URA, and RSA denoted with marks x, [J and
O, respectively.

Results indicate that optimized arrays consistently outper-
form these standard designs up to a PSNR of 2 dB. Further-
more, all reconstruction methods reach maximum performance
at Ny, = 12, N, = 13, corresponding to the lowest
compression case. However, improvements become marginal
beyond Nr, = 6, suggesting minimal practical benefit from
further increasing transmit antennas and hence the acquisition
time. The results also illustrate notable improvements in image
quality, especially for the KM method, which achieves more
than 2.3 dB improvement over baseline arrays. Similarly,
Deep2S-based optimization achieves more than 1 dB PSNR
improvement compared to the next-best performing array
(URA), demonstrating the effectiveness of joint optimization.

The jointly optimized arrays for Deep2S, Kirchhoff migra-
tion, and ¢; regularization, along with their virtual arrays, are
shown in Fig. 4. As seen, different reconstruction algorithms
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Fig. 3: Average test performance across different measurement SNRs vs. number of transmitter antennas (Ng; = 25 — Nrg).
Commonly used MIMO arrays (Mill’s Cross, Uniform Rectangular, Ring Spiral) and optimized arrays are compared.

yield notably distinct array configurations, highlighting that
optimal array design strongly depends on the selected imaging
algorithm. Specifically, Deep2S yields a configuration where
transmit antennas are arranged in a grid-like fashion similarly
to URA but with the difference of having transmit antennas
at the aperture boundaries. Moreover, receive antennas are
present both at the boundaries and near the center, which
results in virtual antenna elements sampling the entire aperture.
In fact, its virtual array shares similarities with RSA since
the distribution of the virtual antennas of both arrays is non-
periodic and more dense at the center.

V. CONCLUSION

This paper introduced a novel joint optimization framework
for sparse MIMO radar imaging, simultaneously optimizing
antenna array configurations and image reconstruction algo-
rithms. The proposed approach is efficient and general, ac-
commodating different imaging methods including traditional
direct inversion, iterative regularized reconstruction, and deep
learning-based reconstruction. Numerical experiments demon-
strated that our optimized systems consistently outperform
traditional MIMO arrays, achieving superior imaging quality
across different SNR levels and antenna configurations.

The developed framework not only offers performance im-
provements but also provides valuable insights into how array
design should align with reconstruction algorithms. Future
extensions of this work could include integrating different
practical considerations into optimization such as antenna
patterns or employing richer datasets for increased robustness.
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