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Abstract—This paper investigates the application of Low-
Rank Adaptation (LoRA) to small models for cross-domain
few-shot object detection in aerial images. Originally designed
for large-scale models, LoRA helps mitigate overfitting, making
it a promising approach for resource-constrained settings. We
integrate LoRA into DiffusionDet, and evaluate its performance
on the DOTA and DIOR datasets. Our results show that
LoRA applied after an initial fine-tuning slightly improves
performance in low-shot settings (e.g., 1-shot and 5-shot),
while full fine-tuning remains more effective in higher-shot
configurations. These findings highlight LoRA’s potential for
efficient adaptation in aerial object detection, encouraging
further research into parameter-efficient fine-tuning strategies
for few-shot learning. Our code is available here: https://github.
com/HichTala/LoRA-DiffusionDet

Index Terms—Object Detection, Few-Shot Object Detection,
Diffusion Models, Cross-Domain, Aerial Images, Low-rank
Adaptation.

I. INTRODUCTION

The last few years have seen remarkable improvement
in large models. Particularly in natural language processing
and computer vision [1] [2]. Parameter-efficient fine-tuning
methods have been developed to train these very large models
for simpler tasks, without the need to train tens of billions of
parameters. One of these is Low Rank Adaptation (LoRA),
which, by injecting low rank matrices while freezing the
model’s pre-training weights, considerably reduces the number
of parameters to be trained in the model. In this way,
LoRA helps to limit the overfitting of large models by
accelerating their convergence. But its potential in models 100
to 1000 times smaller in terms of parameters remains rather
unexplored, particularly in a context of cross domain few-
shot object detection, where the overfitting remains the main
difficulty.

Few-shot Object Detection (FSOD) is a challenging
task that aims to detect objects from novel categories
using only a few labeled examples. When applied across
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domains, the problem becomes even more complex due
to significant distribution shifts between source and target
domains. Traditional fine-tuning approaches often struggle in
such scenarios as they tend to overfit to the limited training
data, especially in smaller models with fewer parameters. This
challenge is even greater in cross-domain contexts, where the
model needs to generalize to new domains with a minimum
of supervision.

Aerial images present an additional complexity for object
detection. These images often contain numerous small
objects densely distributed over the scene, as well as
significant variations in scale between classes, orientation,
and illumination [3]. These characteristics make aerial images
a particularly demanding domain for cross-domain few-shot
object-detection. The main problem remains overfitting in such
a scenario. In this work, we investigate the application of
LoRA to small models, using the COCO [4] dataset as the
source domain and the DOTA [5] and DIOR [6] datasets as
target domains. Both datasets are widely recognized references
for aerial image analysis [7] [8].

The motivation behind this work is to address overfitting
in cross-domain few-shot object detection, particularly for
aerial images. We explore Low-Rank Adaptation (LoRA)
[9], a technique designed for large models, to improve
generalization in smaller architectures like DiffusionDet [10],
which has about millions of parameters. DiffusionDet has
shown effectiveness in detecting small objects, making it a
good choice for aerial images. We compare DiffusionDet with
and without LoRA, testing two strategies: (1) direct LoRA
application and (2) LoRA after intermediate fine-tuning. Using
the DOTA and DIOR datasets, we evaluated LoRA’s ability to
reduce overfitting and improve generalization, offering insight
into its potential for efficient and robust aerial object detection.
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II. RELATED WORK
A. Low-Rank Adaptation (LoRA) for Efficient Fine-Tuning

LoRA [9] is a parameter-efficient fine-tuning method that
adapts pre-trained models to new tasks by injecting low-rank
decomposition matrices into existing weight layers. Instead
of updating all parameters, LoRA introduces small trainable
matrices into transformer layers, significantly reducing
memory usage and computational costs while preserving
the original model weights. Initially developed for natural
language processing (NLP), LoRA has been extended to
computer vision, enabling efficient adaptation of large-scale
models to new domains with limited labeled data.

In the context of aerial images, LoRA has been applied
to vision transformers trained on the DOTA [5] dataset,
demonstrating its effectiveness in transfer learning for tasks
such as object detection [11]. These studies highlight LoRA’s
ability to adapt large-scale models, such as ViT and Swin
Transformer, to new aerial datasets without requiring full
fine-tuning. Beyond aerial images, LoRA has also been
successfully applied to Vision-Language Models (VLMs) like
CLIP [2] and GLIP [12], enabling task-specific adaptation
without modifying the backbone network.

However, most of the research on LoRA has focused
on large-scale models, where the overall trainable capacity
remains high despite parameter reduction. Its application to
smaller object detection models, which have significantly
fewer parameters, remains largely unexplored. This is
particularly relevant in cross-domain few-shot scenarios,
where models must generalize from very limited samples and
domain shifts are prevalent.

B. Few-Shot and Cross-Domain Object Detection

FSOD focuses on detecting novel object categories
using only a small amount of labeled data. Two primary
approaches dominate the literature [13]: meta-learning [14]
and fine-tuning-based methods. Meta-learning trains models
to quickly adapt to new classes by learning transferable
representations, while fine-tuning adapts pre-trained models
to novel categories using limited labeled data. Although meta-
learning excels at learning generalizable features, fine-tuning
remains the dominant strategy, particularly in cross-domain
scenarios where shifts in data distribution introduce additional
complexity [15], [16].

Cross-domain object detection extends FSOD by requiring
models to generalize not only to new classes but also to
different data distributions. The most common approach is
fine-tuning, where a model pre-trained on a source domain is
adapted to a target domain using a limited number of labeled
examples.

Aerial object detection presents unique challenges due to
variations in image resolution, sensor types, and environmental
conditions across datasets. To address these domain shifts,
researchers have explored techniques such as feature alignment
[17] and multi-scale representation learning [18], which aim
to bridge the gap between satellite images and drone-captured

images. However, these methods often require extensive
adaptation, increasing computational complexity and limiting
their practicality in resource-constrained scenarios.

C. DiffusionDet

DiffusionDet [10] is an object detection framework that
formulates detection as a denoising diffusion process. Unlike
traditional detectors that rely on handcrafted components
like anchor boxes or region proposal networks, DiffusionDet
directly predicts object bounding boxes and categories
by iteratively refining noisy proposals. This approach has
proven particularly effective for detecting small objects,
making it well-suited for challenging domains such as aerial
images, where objects are often densely distributed and vary
significantly in scale.

Recent work has explored adapting DiffusionDet to few-
shot object detection (FSOD) and cross-domain scenarios. For
instance, [19] demonstrated that DiffusionDet can be fine-
tuned for few-shot or cross-domain settings by leveraging its
iterative refinement process to generalize better to categories
with limited labeled data. However, these adaptations often
require extensive fine-tuning, which can lead to overfitting,
especially in resource-constrained settings with limited labeled
data.

Our work builds on these advancements by integrating Low-
Rank Adaptation (LoRA) into DiffusionDet, enabling efficient
adaptation to cross-domain few-shot object detection. By
injecting low-rank matrices into DiffusionDet’s architecture,
we aim to reduce overfitting while maintaining the model’s
ability to generalize across domains. This approach extends
prior efforts by addressing overfitting challenges associated
with fine-tuning DiffusionDet, particularly in the context of
aerial images where domain shifts and data scarcity are
prevalent.

D. Other Detectors in Cross-Domain Few-Shot Scenarios

Beyond DiffusionDet, several other detectors have
been adapted for cross-domain few-shot object detection,
each addressing the challenges of domain shifts and
limited labeled data. For instance, CD-ViTO [20] leverages
vision transformers combined with cross-domain alignment
techniques to improve generalization across diverse datasets.
By integrating domain-adversarial training and feature
alignment modules, CD-ViTO effectively reduces domain
discrepancies while maintaining high detection accuracy
in few-shot settings. Other approaches include Meta-Det
[21]. These methods showcase the variety of strategies
available for tackling cross-domain few-shot detection. It
would be interesting to extend our studies to include such
models, further exploring the potential of LoRA in diverse
architectures and settings.

III. CHALLENGE OF CROSS-DOMAIN FEW-SHOT OBJECT
DETECTION IN AERIAL IMAGES

Aerial images present a unique set of challenges for object
detection [3], making them an especially demanding domain
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for few-shot learning and cross-domain adaptation. Unlike
ground-level images, aerial scenes often contain numerous
small objects, such as vehicles, buildings, or infrastructure
components, which are densely distributed across the image.
The small size and high density of these objects make them
difficult to detect and localize accurately, even for state-of-
the-art models. Additionally, aerial images exhibit significant
variations in scale, orientation, and lighting conditions,
further complicating the detection task. These challenges are
exacerbated in few-shot settings, where models must learn
to detect novel object categories with only a handful of
examples, and cross-domain adaptation introduces even further
complexity. In this context, the risk of overfitting is particularly
high, as small models may struggle to capture the diverse and
intricate patterns present in aerial scenes.

In this context, foundation models, including Vision-
Language Models (VLMs) [22] [23], are less suitable for
aerial object detection. Beyond the practical limitations of
deploying such models in resource-constrained environments,
their training data often focuses on horizontal perspectives,
resulting in representations that are biased toward ground-
level views. For example, in the embedding space of a
VLM, the word "car" is more likely to be associated with
horizontal representations of cars rather than their aerial
counterparts. This misalignment between the model’s learned
representations and the unique characteristics of aerial images
limits their effectiveness in this domain.

Cross-domain few-shot object detection adds an additional
level of complexity. In classic few-shot object detection, the
model has access to a sufficient number annotated image of
base classes from the same domain and aims to generalize to
novel classes with limited examples. In contrast, cross-domain
few-shot detection involves adapting to a target domain where
all classes are novel, using a source domain with abundant
data. This scenario requires the model to bridge significant
domain shifts while learning from scarce labeled data.

IV. METHODOLOGY

Our methodology evaluates the effectiveness of LoRA
[9] for cross-domain few-shot object detection using the
DiffusionDet [10] framework. We begin with a pre-trained
DiffusionDet model on the COCO [4] dataset, which serves
as the source domain, and fine-tune it on reduced subsets
of the DOTA [5] and DIOR [6] datasets as target domains.
These subsets are carefully curated to simulate a few-shot
regime, ensuring that the model is trained with limited labeled
data. The backbone used for DiffusionDet is ResNet50 [24],
providing a balance between computational efficiency and
feature extraction capability.

First, to simulate a few-shot setting, we randomly sampled
multiple subsets from the DOTA and DIOR datasets for each
shot configuration. Averaging the results across these subsets
accounts for selection variability, reduces dataset bias, and
ensures a fair evaluation of the model’s generalization ability.

To establish a baseline, we first fine-tune the pre-trained
DiffusionDet model on the reduced subsets of DOTA and

pre-training

DiffusionDet

fine-tuning

Best checkpoint

Fig. 1. Training Pipeline for DiffusionDet with LoRA After
Intermediate Fine-Tuning.

sampling

subset of
DOTA/DIOR

DOTA/DIOR

(k images
per class)

LoRA fine-tuning

DIOR without freezing any parameters. The results from this
baseline experiment serve as a reference point for evaluating
the effectiveness of LoRA in the subsequent steps.

To evaluate the effectiveness of LoRA in cross-domain few-
shot object detection, we designed a series of experiments
comparing two key approaches, as described below.

1) In the first one, we explore the direct application of LoRA
to the pre-trained DiffusionDet model. By injecting low-rank
matrices into the model’s architecture and freezing the original
weights, we significantly reduce the number of trainable
parameters. This approach aims to mitigate overfitting while
maintaining the model’s ability to generalize across domains.
The model is then fine-tuned on the reduced subsets of DOTA
and DIOR, and its performance is evaluated on a separate
validation set.

2) In this second approach, illustrated in Fig. 1, we first
fine-tune the pre-trained DiffusionDet model on the reduced
subsets of DOTA and DIOR until it reaches a checkpoint
with optimal performance on the validation set, just before
overfitting occurs. We then apply LoRA to this checkpoint,
freezing the original weights and fine-tuning only the low-
rank matrices. The idea behind this two-stage approach
is to first push the model to its limits, approaching the
point of overfitting, and then use LoRA to continue training
without the risk of overfitting. By applying LoRA to this
checkpoint, we freeze the original weights and fine-tune only
the low-rank matrices, allowing the model to adapt further
while maintaining generalization. This strategy leverages
the benefits of both full fine-tuning and parameter-efficient
adaptation, achieving a better balance between performance
and robustness.
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TABLE I. Object etection results (mAP) of DiffusionDet model pretrained on COCO [4] and fine-tuned on DIOR [6] and DOTA [5] datasets
in cross-domain few-shot settings. We compare the baseline (no LoRA), LoRA with different ranks (4, 8, 32, 128), and LoRA applied after

intermediate fine-tuning. Best results per shot configuration are bold.

Dataset  Shots | (r?a;f:liélz : LoRA |  LoRA after a Fine-Tuning
| MOEORA Ty 8 32 128 | 4 8 32 128
1 10.66 7.32 6.83 7.51 6.52 1148 11.58 11.64 11.57
DIOR 5 31.29 24.14 2484 2402 2445 | 3240 32.2 3235 3245
10 41.50 3472 3425 3391 3323 | 40.64 40.68 40.81 41.18
50 59.71 56.43 5341 5324 5647 | 57.72 5774 57778  57.70
1 4.23 1.86 1.81 1.81 1.70 4.89 4.85 4.84 4.97
DOTA 5 22.52 15.17 1483 15.15 1473 | 22,75 22.83 2291 2285
10 32.77 25.12 2454 2507 25.06 | 3223 3233 3230 32.14
50 49.17 4290 42.07 4250 42,15 | 4790 4799 48.03 47.94

V. EXPERIMENTS AND RESULTS

To evaluate the effectiveness of LoRA in cross-domain few-
shot object detection, we conducted a series of experiments
using the DiffusionDet framework. Our experiments were
designed to assess the impact of LoRA on model performance,
overfitting, and generalization across domains, particularly in
the challenging context of aerial images.

We used DiffusionDet model pre-trained on the COCO
dataset, using the weights provided by the original authors
[10]. For the target domains, we selected the DOTA and DIOR
datasets, which were converted to COCO format'. To simulate
a few-shot setting, we randomly selected k& images per class
for training, where k represents the number of shots. To ensure
a fair comparison and account for variability in the selection of
images, we repeated each experiment 5 times and reported the
average results. Given that DOTA images often contain more
than 100 objects, we set the maximum detection threshold to
300 in the pycocoapi evaluation toolkit [25].

All experiments were conducted over 300 epochs, following
the training protocol established by the original DiffusionDet
authors. We evaluated the model performance using the mean
average precision (mAP) at an IoU threshold of 0.5, which is
a standard metric for object detection tasks. For the baseline,
we fine-tuned the pre-trained DiffusionDet model on the
few-shot subsets of DOTA and DIOR without freezing any
parameters. As described in section IV, for the LoRA-based
experiments, we explored two approaches: applying LoRA
directly to the pre-trained model and applying LoRA to the
best checkpoint obtained from the baseline fine-tuning. In the
latter approach, we selected the checkpoint with the highest
validation performance after 300 epochs and fine-tuned it
further using LoRA.

To investigate the impact of rank selection on LoRA’s
performance, we tested four different ranks: 4, 8, 32, and
128. The results of these experiments are presented in Tab.
I, which compares the performance of the baseline, direct
LoRA application, and LoRA after intermediate fine-tuning
across different ranks. By averaging results across multiple

IThey can be found here: https:/huggingface.co/datasets/HichTala/dota,
https://huggingface.co/datasets/HichTala/dior.

runs, we ensure a robust evaluation of LoRA’s effectiveness
in mitigating overfitting and improving generalization in cross-
domain few-shot object detection.

Across both datasets, the baseline outperforms direct
LoRA application in all shot configurations. However, LoORA
applied after intermediate fine-tuning shows improvements,
particularly in low-shot settings. On DIOR, the best mAP of
11.64 (rank 32) is achieved in the 1-shot setting, while on
DOTA, the best mAP of 4.97 (rank 128) is achieved. Similarly,
in the 5-shot setting, the best mAPs are 32.45 (rank 128) on
DIOR and 22.91 (rank 32) on DOTA. In higher-shot settings,
the baseline remains competitive, but LoRA after fine-tuning
closely matches its performance.

LoRA after intermediate fine-tuning slightly improves
performance in low-shot settings, while the baseline remains
strong in higher-shot configurations. The choice of rank in
LoRA has a moderate impact on performance, with lower
ranks (e.g., 4, 8) often performing comparably to higher ranks
(e.g., 32, 128).

VI. DISCUSSION

The experimental results demonstrate that LoRA,
particularly when applied after intermediate fine-tuning,
is a promising approach for cross-domain few-shot object
detection. This improvement, although minimal, suggests that
efficient parameter fine-tuning could be a viable alternative
to full fine-tuning, particularly in resource-constrained
environments.

The choice of rank in LoRA has a moderate impact on
performance, with lower ranks (e.g., 4, 8) often performing
comparably to higher ranks (e.g., 32, 128). This indicates
that lower ranks may suffice for many applications. However,
the baseline’s strong performance in higher-shot configurations
underscores the importance of full fine-tuning when sufficient
data is available. These results underline the need for a
balanced approach, adjusting the fine-tuning strategy to the
specific requirements of the task and dataset, and could be the
subject of further study.

While our approach shows promise, it is not without
limitations. The performance of LoRA depends on the quality
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of the initial fine-tuning. Additionally, our experiments are
limited to DiffusionDet and two aerial datasets; extending
this approach to other architectures and domains could
yield further insights. Future work could explore combining
LoRA with other few-shot learning techniques to enhance its
effectiveness.

It is worth noting that the cross-domain scenario explored
in this work—adapting from natural images (COCO) to aerial
images (DOTA and DIOR), remains particularly challenging
due to the significant differences in perspective, scale, and
object appearance. A simpler yet equally interesting scenario
would involve adapting between aerial images, such as from
DOTA to DIOR or vice versa, where the domain shifts are less
extreme. One could also explore adapting aerial images across
different environments, seasons, or lighting conditions. Such
experiments could provide valuable insights into the robustness
and versatility of LoRA in less extreme domain shifts.

VII. CONCLUSION

In this work, we investigated the application of LoRA
to DiffusionDet model for cross-domain few-shot object
detection, with a focus on the challenging domain of aerial
images. Using the DiffusionDet framework, we evaluated the
effectiveness of LoRA in mitigating overfitting and improving
generalization across the DOTA and DIOR datasets. Our
experiments compared three approaches: (1) baseline fine-
tuning, (2) direct LoRA application, and (3) LoRA applied
after intermediate fine-tuning. The results demonstrated that
while the baseline outperformed direct LoRA application,
LoRA after intermediate fine-tuning achieved competitive
performance, particularly in low-shot settings (e.g., 1-shot and
5-shot). This highlights LoRA’s potential to balance adaptation
and generalization, especially when combined with an initial
fine-tuning phase.
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