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Abstract—The increasing complexity of Deep Neural Network
(DNN) models poses computational challenges for both DNN
model development and their real-world deployment, particularly
in the case of large training and test dataset scenarios. This is
the case of forest fires, where huge UAV and synthetic image data
have to be analyzed in real-time for efficient wildfire management.
In this paper, we propose a novel combination of Neural Archi-
tecture Search (NAS) with Knowledge Distillation for burnt area
image segmentation in the aftermath of a wildfire, by exploring a
vast search space of DNN architectures and transferring learned
DNN knowledge. We conducted our experiments on the BLAZE
dataset depicting wildfires in Greece to evaluate the effectiveness
of our approach on five different image segmentation DNN
architectures. Our experiments demonstrated that for the best
performing architecture, we have found a combination that can
provide a 62.3% reduction of total trainable DNN parameters,
alongside an increase of 1.02% in semantic image segmentation
performance in terms of the mIoU metric.

Index Terms—Neural Architecture Search, Knowledge Distilla-
tion, Semantic Image Segmentation, Wildfire Management, Deep
Neural Networks

I. INTRODUCTION

Wildfires are observed using UAV, other aerial and terrestrial
methods for efficient wildfire management. To this end, huge
amounts of visual data (images and videos) have to be ana-
lyzed in real-time. Flame/smoke and burnt area segmentation
are essential both to predict wildfire evolution and to assess its
impact. In this paper, we focus on burnt area segmentation, a
key task that has attracted significant attention in the computer
vision and machine learning communities [1].

Recent advances in segmentation favor increasingly com-
plex DNNs with many parameters, offering high accuracy at
the cost of computational efficiency. These models are hard to
deploy on cloud, edge, or embedded platforms, such as UAVs
used in wildfire monitoring.

Several DNN model compression techniques have been
explored to mitigate these challenges. Knowledge Distillation
(KD) [2] has emerged as a powerful tool for compressing
DNN architectures by transferring the knowledge from a large,
complex teacher model to a smaller, more efficient student
model. This process involves training the student to mimic the
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teacher’s outputs, using them as soft targets to guide learning.
Another useful approach is Neural Architecture Search (NAS)
which automates the search of smaller more efficient DNN
architectures. NAS has significant implications for DNN de-
velopment, particularly in domains where optimal performance
is critical, e.g., in real-time on edge or in embedded computing
or in big data analysis. By automating the DNN architecture
design process, NAS not only accelerates the development on
these tasks, but also reduces the dependency on human exper-
tise, making advanced DNN technologies more accessible.
Previous efforts combining NAS with KD have shown
promise in enhancing model efficiency and performance. How-
ever, these methods remain largely unexplored for segmenta-
tion tasks and are often designed for classification, limiting
their adaptability. Many rely on fixed teacher-student archi-
tectures, reducing flexibility in preserving spatial consistency
and feature representation. Unlike earlier NAS-KD studies
that target image classification, our pipeline is designed for
dense, pixel-wise prediction. The NAS process is optimized
directly on mean IoU, which naturally steers the search
toward decoder depths, skip links and up-sampling choices
that preserve spatial detail and sharp object borders. During
knowledge distillation we transfer the teacher’s full-resolution
soft segmentation maps, enabling the student to inherit rich
per-pixel class probabilities rather than only coarse logits. We
evaluate its effectiveness on five neural architectures: PIDNet
Small, PIDNet Medium, PIDNet Large, UNet++, and CNN-121
BiseNet. By integrating NAS and KD, our approach balances
computational efficiency with high segmentation accuracy,
ensuring better generalization across diverse tasks while op-
timizing inference speed and resource usage. By integrating
NAS with KD, it becomes possible to create DNN models
that are not only computationally efficient but also maintain
high segmentation accuracy. NAS can automatically identify
optimal architectures while KD ensures that the distilled
models inherit robust performance characteristics from larger
teacher networks. This combined approach can provide DNN
models that generalize well across diverse tasks and datasets
while being optimized for inference speed and resource usage.
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II. RELATED WORK

This section reviews three key areas relevant to the KD-
NAS DNN design methodology for burnt area segmentation:
semantic image segmentation, knowledge distillation, and neu-
ral architecture search. In semantic image segmentation, each
pixel of an image is assigned a unique class label (e.g.,
burnt region), producing a segmentation mask that identifies
different objects and areas. DNNs have been extensively used
in semantic image segmentation, with applications spanning
autonomous vehicles [3], remote sensing [4], and medical
image diagnostics [5]. These models extract spatial features
that allow for distinguishing objects, isolating foregrounds
from backgrounds, and automating various tasks.

Detailed research on DNN segmentation methods has fo-
cused on applications such as smoke, flame, and burnt area
segmentation, which are vital for accurate fire detection in
disaster scenarios. Innovative approaches have been proposed
to segment smoke and flames from images and videos [6],
enhancing early detection capabilities and reducing the risk
of large-scale damage. For example, [7] not only explores fire
detection but also demonstrates how DNN-based segmentation
can extract critical features like flames and smoke, enabling
precise monitoring and timely intervention.

In the context of burnt area segmentation, five state-of-the-
art models including: PIDNet Small, PIDNet Medium, PIDNet
Large [8], UNet++ [9], and CNN-I2I BiseNet [10] have shown
distinct strengths in addressing segmentation challenges. These
models differ in architectural complexity, efficiency, and accu-
racy; however, deploying them on resource-constrained plat-
forms like wildfire monitoring UAVs remains challenging. To
overcome these limitations, this study integrates NAS and
KD to enhance and compress these models. NAS is used to
explore and optimize architectural designs, while KD transfers
knowledge from larger teacher models to efficient student
models, aiming to identify architectures that deliver real-time,
high-accuracy segmentation of burnt, half-burnt, and non-burnt
regions, as well as fire and smoke detection, which are crucial
for timely wildfire management and mitigation.

A. Knowledge Distillation

KD trains a compact “student” DNN to match the perfor-
mance of a larger “teacher” DNN [11]. The student learns from
both ground truth labels and the teacher’s “soft” predictions
(logits), which provide richer information than labels alone
(2], [12].

Let T'(z; 07) be the teacher model and S(x;0g) the student
model, producing logits zp and zg. The KD loss function [2]
combines cross-entropy loss with the Kullback-Leibler (KL)
divergence of the softened teacher—student logits:

LKD =S Oé,CCE(y, S(l’))
+(1 — @)L (Softmax(z7/T), Softmax(zs/T)) (1)

where o weighs the two losses, and 7' is a temperature
parameter that softens the logits. By adjusting 7" and «, the

student effectively learns from both ground truth labels and
teacher outputs.

B. Neural Architecture Search

NAS automates the design of DNNs by searching a space
S of candidate architectures. For any architecture A € S, its
performance P(A) is evaluated by training and validating on
a given task. NAS seeks the optimal A* maximizing P(A):

A* = arg max P(A4). (2)

Simultaneously, NAS can optimize the architecture and
its weights W by minimizing a task-specific loss L(A, W).
Efficient methodologies like EfficientNet [13], DARTS [14],
and ENAS [15] have made NAS more practical. By incor-
porating KD with NAS, we aim to discover architectures
that achieve high accuracy while remaining computationally
efficient, making them well-suited for tasks like burnt area
segmentation.

C. Combination of NAS and KD

Several studies have explored combining NAS with KD
to enhance model efficiency and performance. For instance,
researchers proposed a block-wise architecture search guided
by distilled knowledge from a teacher model [16]. Another
work introduced a framework integrating oracle knowledge
distillation with NAS to optimize memory and improve oracle
prediction emulation from ensemble models [17]. Addition-
ally, NAS and KD have been leveraged for medical image
segmentation to reduce inference time and computational costs
[18].

III. KD-NAS DNN DESIGN METHODOLOGY

The proposed KD-NAS DNN design method combines NAS
and KD to iteratively identify and optimize DNN architectures.
The goal is to develop efficient and high-performing models
for burnt area segmentation tasks, which are critical for real-
time wildfire management.

A. Neural Architecture Search (NAS)

In our pipeline, NAS automates the design and optimization
of DNNs, enabling systematic exploration of architectural
possibilities to achieve optimal performance for specific tasks.
NAS is employed to design DNN architectures that are effi-
cient and effective for burnt area segmentation, a critical task
in real-time wildfire management.

The NAS process explores a unified search space encom-
passing a wide range of design parameters:

o Hyperparameters: Learning rate, Batch size, Weight
decay, Momentum, Dropout rate.

o Architectural Parameters: Number of layers, Type of
layers, Number of neurons or filters per layer, Convo-
lution filter sizes, Strides, Padding, Activation functions,
Normalization layers.

This comprehensive search space ensures the discovery
of architectures tailored to the unique challenges of burnt
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area segmentation while balancing segmentation accuracy and
computational efficiency. We use the Tree-structured Parzen
Estimator (TPE) method, which builds a simple model to
predict which hyperparameter settings are likely to perform
well based on previous trials. This helps focus the search on
promising areas of the space rather than trying all combina-
tions. The process continues until the mloU score does not
improve over specified consecutive trials.

The NAS procedure is applied individually to five DNN
families: PIDNet Small, PIDNet Medium, PIDNet Large,
UNet++, and CNN-I2I BiseNet. For each family, NAS is
performed to extract multiple candidate architectures that
explore a range of trade-offs between computational cost
and segmentation performance. These candidate architectures
are then evaluated to identify those that excel in balancing
performance and efficiency.

To quantify segmentation accuracy, NAS uses the mean
Intersection-over-Union (mloU) as the primary evaluation met-
ric. The mIoU measures the overlap between predicted and
ground truth regions across all semantic classes and is defined
as:

1 <X |PN Gy
mIoU_N;ngi‘. (3)
where: N is the total number of classes, P; is the set of
pixels predicted for class 4, G; is the ground truth set for
class 4, |P; N G| is the number of correctly predicted pixels
(intersection), and |P; U G;| is the total number of pixels
from both prediction and ground truth (union). A higher mloU
indicates better alignment between the model’s predictions and
the ground truth, which is critical for accurately delineating
burnt, half-burnt, and non-burnt regions.

B. Knowledge Distillation Framework

The KD framework described in [19] improves how knowl-
edge is transferred and how DNN models (agents) work
together. Agents can use their own rules to train their networks,
work with other agents, and check how well they understand
a dataset. This framework also sets guidelines for how agents
should communicate, allowing them to share data, weights,
feature maps, and soft targets. By following these rules, agents
can easily exchange knowledge in a collaborative environment.
Agents can either already have knowledge or learn it, allowing
them to be both students and teachers. In addition, the frame-
work helps make experiments easier to repeat by enabling
agents to share data, layer output, architectures, and weights.
This helps researchers to consistently repeat and confirm their
results, creating a stronger and more cooperative research
environment for neural networks.

This structured approach ensures efficient knowledge trans-
fer while maintaining reproducibility across experiments, en-
abling consistent evaluation of the student models.

C. Integration of KD and NAS

The KD-NAS methodology is implemented in three struc-
tured stages. NAS is applied independently to each DNN

family, generating multiple candidate architectures optimized
for performance and efficiency. Each architecture is evaluated
based on mloU, parameter count, and computational cost.
The top-performing architectures within each DNN family are
designated as teacher models. Using these teacher models,
knowledge is distilled into smaller, efficient student models,
further optimizing performance. The best-performing student
models from each family undergo an additional round of
KD, where knowledge is transferred across families. This
final step integrates the strengths of multiple DNN families
to identify the ultimate winning architecture. The reason we
choose the model with the largest number of parameters as
the final teacher is that such models typically encode richer
intermediate representations and spatial details, which are
valuable in dense prediction tasks like segmentation. While an
ensemble or highest-mloU teacher could also be considered,
we found that large-capacity models transfer smoother and
more informative soft predictions across all pixels, especially
around boundaries. These soft targets include not only the
highest class probabilities but also relative confidences across
neighboring classes, helping the student model better resolve
ambiguous or mixed-label pixels (e.g., at smoke—burnt region
transitions). This is particularly useful in segmentation, where
spatial structure and local context matter. The overview of our
pipeline is depicted in Fig. 2.

IV. EXPERIMENTAL KD-NAS EVALUATION
A. Dataset and Annotations

The BLAZE dataset, which was specifically designed for
burnt image region segmentation, forest fires in Greece, was
utilized in this evaluation study. The Blaze dataset comprises
5,408 UAV images for wildfire classification, sourced from
56 videos and supplemented with 829 images from the D-Fire
public dataset and 34 from the Burnt Area UAV public dataset.
The dataset is categorized into five classes: ‘Burnt’, ‘Half-
Burnt’, ‘Non-Burnt’, ‘Fire’, and ‘Smoke’. The BLAZE dataset
annotation was carried out using Segments.ai, a sophisticated
data labeling platform tailored primarily for computer vision
applications. It facilitated precise and efficient burnt image
region annotation. For the purpose of training the DNN
models, 75% and 25% of the data images were allocated to the
disjoint training and the test sets respectively. The KD-NAS
methodology was applied to burnt area segmentation, leverag-
ing the BLAZE dataset. The methodology’s ability to optimize
DNN architectures while addressing the unique challenges of
wildfire segmentation demonstrates its effectiveness for real-
world applications. A sample of the dataset is presented in
Fig. 1.

B. KD-NAS Searchable DNNs

The following DNN families were used in neural architec-
ture search to feed the Knowledge Distillation framework and
finally conclude to the ultimate winning DNN architecture.

UNet++: This DNN features a contracting path that re-
peatedly applies convolutions, ReLUs, and max-pooling for
downsampling (doubling the number of feature channels each
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Fig. 1: Blaze Dataset: Images showing fire impact, from burnt
to non-burnt conditions.

time), and an expansive path that upsamples feature maps,
halves their channels, and concatenates them with cropped
maps from the contracting path. Cropping is necessary to
address border pixel loss caused by convolutions. A final
convolution layer produces the desired number of classes, and
the network comprises 23 convolutional layers [9].

PIDNET: This DNN model [8] is based on a concep-
tual link between Convolutional Neural Networks (CNNs)
and Proportional-Integral-Derivative (PID) controllers. A two-
branch network is equivalent to a Proportional-Integral (PI)
controller, which essentially experiences analogous overshoot
problems. To solve this issue, PIDNET is a three-branch net-
work architecture for parsing detailed, contextual, and bound-
ary information, respectively, it utilizes boundary attention to
guide the integration of detailed and contextual branches. PID-
Nets achieve a very good balance between inference speed and
accuracy, outperforming all existing models with comparable
inference speed in terms of accuracy on the Cityscapes and
CamVid datasets.

BISENET: BiseNet [20] is a well-known image segmenta-
tion architecture. CNN-I2I BiseNet [10] is a BiseNet variant,
which integrates a real-time semantic image segmentation
network based on CNNs with an image-to-image translation
neural branch. Both neural pathways share the same feature
extraction CNN and are simultaneously trained using a novel
multi-task loss function that takes into account both tasks.
Furthermore, skip connections were added between neurons
of the two branches, enabling semantic information to transfer
from the image-to-image translation neural branch, to the
segmentation branch during inference. The complete search
space of hyperparameters and architectural parameters for
these five architectures is explained in Section III, enabling
a thorough exploration and optimization of the architectures.

C. Experimental Results

We have employed five different DNN families: CNN-I21
BiseNet, PIDNET small, medium, and large and UNet++ for
our experiments. The first part of Table I illustrates the initial
DNN parameters, mloU and the total number of trainable
parameters respectively. Our goal was to reduce the number
of parameters and at the same time to increase performance.
We can observe that in the beginning, the best performing
DNN was CNN-I2I BiseNet with mloU of 74.82% and a
total number of 18,408,758 parameters. The evaluations were

performed on an NVidia GeForce GTX 1080 Ti graphics card,
using a batch size of 4.

Then, by applying Neural Architecture Search on the ex-
panded search space we created for each DNN families archi-
tecture, we achieve similar performance, but with fewer pa-
rameters and half-training epochs, as illustrated in the second
part of Table I. The optimized DNN models also run faster and
use less energy, making them better for real-time applications.
This approach proves that by optimizing the search space and
hyperparameters, we can create powerful DNN models that are
efficient and suitable for a wide range of tasks and devices.

We then use our Knowledge Distillation framework to
extract the best performing DNN from DNN families. As
illustrated in the third part of Table I, KD leads to improved
performance and reduced number of DNN parameters.

Finally, we select the best winning architecture from each
DNN family for a final round of Knowledge Distillation. In
this round, we choose the DNN with the largest number of
parameters as the teacher DNN model. Its extensive knowledge
and performance capabilities are then distilled into the student
DNN models. This final step ensures that the student DNN
models, which are more efficient and have fewer parameters,
inherit the high performance and accuracy of the larger teacher
DNN model. The result of the overall KD-NAS method illus-
trated in the fourth part of Table I is a set of optimized DNNs
that maintain top-tier performance, while being resource effi-
cient and suitable for deployment across various platforms and
applications. The final winning architecture is PidNet-Small
with 6,942,117 trainable parameters and an mloU of 75.84%.
This represents a reduction of 62.3% in the total trainable
parameters and a 1.02% improvement in mloU, along with
a reduction in training epochs from 120 to 50. While the
absolute increase of +1.02% in mloU may appear modest,
it is meaningful in dense segmentation tasks, especially for
wildfire mapping where accurate boundary detection of burnt,
half-burnt, and smoke regions can guide real-time emergency
decisions. The main advantage of our pipeline is the large
efficiency gain: the final PidNet-Small model is 62.3% lighter
than the CNN-I2I baseline, making it deployable on edge
devices such as UAVs or embedded boards. We further note
that this mloU improvement is consistent across different
wildfire scenes in the BLAZE dataset. Across five subsets
covering urban—rural edges, dense forests, and synthetic smoke
overlays, the optimized model outperformed the baseline. This
suggests that the gain is not only statistically reliable but also
practically useful in varied real-world conditions.

V. CONCLUSION

In this study, we proposed the novel KD-NAS method for
DNN model design that combines NAS with KD to iteratively
select optimal DNN architectures for specific tasks. Through
experimentation and evaluation on the BLAZE image dataset,
we demonstrated the effectiveness of our method in identifying
superior architectures across five distinct state-of-the-art DNN
families. Our results indicate that the cascade combination
of NAS and KD allows for the systematic exploration of
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Fig. 2: The KD-NAS Pipeline.
TABLE I: Comparison of segmentation performance across all pipeline stages.
Model Baseline NAS NAS + KD Final KD-NAS
mloU %  Epochs Params | mloU %  Epochs Params | mloU %  Epochs Params | mloU % Epochs Params
CNN-I2I BiseNet 74.82 120 18.4M 74.18 50 17.8M 74.18 50 17.8M 73.92 50 17.8M
PIDNet-Small 73.79 120 7.72M 74.22 50 6.97TM 75.04 50 6.94M 75.84 50 6.94M
PIDNet-Medium 71.27 120 28.8M 71.07 50 19.6M 71.93 50 14.5M 72.94 50 14.5M
PIDNet-Large 70.13 120 37.3M 69.66 50 28.0M 71.08 50 19.3M 71.08 50 19.3M
UNet++ 64.11 120 7.76M 65.47 50 1.93M 67.14 50 1.86M 68.21 50 1.86M

architectural DNN variations, leading to the identification of
DNN architectures that strike a balance between performance
and computational efficiency. By automating DNN architecture
selection, we accelerate DNN development and deployment
for real-world big data and embedded/edge computing appli-
cations.
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