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Abstract—This paper proposes a novel active learning (AL)-
incorporated cross-scene hyperspectral image (HSI) classification
method, which combines a graph convolutional network (GCN)-
based classifier with an adaptive fusion framework for multiple
AL selection criteria. Specifically, we extend the existing dynamic
multiscale GCN from single-scene to cross-scene classification
by introducing a feature alignment module and a cross-scene
loss function to enhance domain adaptation. Additionally, our
AL module fuses multiple widely used sampling criteria through
score-to-probability transformation and categorical distribution
fusion, in order to mitigate biases from individual strategies and
leverage their complementary strengths. This enables the model
to refine its target-scene training set, improving classification
performance with minimal labeling effort. Experiments on the
Pavia dataset demonstrate that the proposed method outperforms
several recent cross-scene HSI classification approaches.

Index Terms—Cross-scene classification, hyperspectral image
(HSI) classification, active learning (AL), fusion of active learning
strategies.

I. INTRODUCTION

Cross-scene hyperspectral image (HSI) classification has
attracted increasing interest in recent years [1]-[3]. It reduces
the significant costs of labeling high-dimensional HSI samples
across different scenes. The core idea of cross-scene classifi-
cation is to leverage the relatively abundant labeled samples
from a source scene to assist in classifying a newly acquired,
similar target scene with very few or no labeled samples [1].

With the rapid advancement of deep learning, models such
as convolutional neural networks (CNNs), deep neural net-
works, and graph convolutional networks (GCNs) have been
extensively applied to HSI classification [4]-[6]. However,
compared to single-scene classification, cross-scene classifi-
cation faces additional challenges due to scene dissimilari-
ties caused by variations in sensor acquisition, geographical
locations, and weather conditions [7]. These dissimilarities
necessitate the use of transfer learning techniques to mitigate
domain shifts and enhance classification performance. Conse-
quently, cross-scene classification is often framed as a transfer
learning problem, as it involves transferring knowledge from
a source scene to a target scene [8].
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Domain Adaptation (DA), a form of transductive transfer
learning [9], is commonly used to reduce domain bias be-
tween source and target scenes. Various DA methods have
been integrated with deep learning models to improve cross-
scene classification accuracy. For instance, the deep cross-
domain few-shot learning (DCFSL) method [10] employed
a conditional adversarial DA strategy to learn a domain-
adaptive feature embedding space, ensuring better alignment
between source and target distributions. Similarly, [11] pro-
posed a class-covariance-based few-shot learning (CMFSL)
framework, which leverages a spectral-prior-based refinement
module to further minimize domain shifts. In [7], a dual-stream
discriminative attention network (DSDAN) was proposed, uti-
lizing a lightweight hybrid CNN with dual-stream processing
to extract spatial-spectral features from both domains, while
a discriminative attention block enhances domain alignment.

Besides the development of cross-scene classifiers, iden-
tifying salient target samples for labeling when exploring a
new scene is also crucial for improving model performance.
Active learning (AL) is an iterative process that selects the
most informative examples from a pool of unlabeled samples.
In cross-scene classification, AL strategies can leverage knowl-
edge from a similar source scene to identify the most relevant
target samples for annotation, thereby improving classification
accuracy in both scenes while minimizing labeling costs.
Despite its success in single-scene HSI classification [12]-
[14], the application of AL to cross-scene HSI classification
remains limited. In [15], a salient sample query (SSQ) AL
process was introduced to query and identify salient samples in
both the source and target domains, which were subsequently
used to construct a deep mapping network for improving
classification performance.

In this paper, we propose a novel AL-incorporated cross-
scene classification method that employs a newly devised
cross-scene GCN as the base classifier. Unlike existing AL
methods, our AL module fuses decision results from multiple
classical AL strategies, including entropy-based, confidence-
based, margin-based, and cluster-based sampling, through
probability transformation and distribution fusion, while adap-
tively balancing the contributions of different strategies to
ensure a more robust and adaptive selection process. Addi-
tionally, in the base classifier, we extend the existing dynamic
multiscale GCN (DMS-GCN) from single-scene to cross-scene
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classification by introducing a feature alignment module and a
cross-scene loss function. While graph-based learning captures
spatial-spectral relationships to enhance feature representation
and domain adaptation, active learning enriches the training
set by selecting informative target-scene samples, improving
classification performance with minimal labeling effort.

The rest of the paper the proposed cross-scene GCN clas-
sification method with an integrated AL module (Section
II), elaborates the fusion method of multiple AL strategies
(Section III), presents experimental results (Section 1V), and
concludes in Section V.

II. PROPOSED METHOD

Throughout this paper, symbols with subscripts s and ¢ rep-
resent samples or statistics from the source and target scenes,
respectively. Let the source scene data be denoted as Xy =
{xg}zlzl C R, which contains both labeled and unlabeled
samples, and the target scene data as X; = {xi}zl C R4,
where ng and n; represent the number of source and target
samples, respectively, and d denotes the data dimension. In
cross-scene HSI classification, labeled samples from the target
scene are often scarce (or even absent), whereas those from
the source scene are relatively abundant. The objective is to
predict the labels for the unlabeled portion of A;.
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Fig. 1. Architecture of the proposed CSGCN-FAL for cross-scene HSI
classification

The architecture of the proposed network for cross-scene
HSI classification is illustrated in Fig. 1. It is built upon the
DMS-GCN model, originally designed for single-scene semi-
supervised hyperspectral image classification [16]. To extend
its applicability to cross-scene classification, we introduce
several key modifications. First, a feature alignment module
is incorporated to mitigate feature distribution differences
between the source and target scenes, ensuring robust per-
formance across scenes. Second, a cross-scene loss Function
is specifically designed to optimize classification performance
in the cross-scene scenario. Finally, an AL module adaptively
selects the most representative samples for annotation, thereby
improving classification accuracy under limited labeled data
constraints.

A. Feature Extraction Module

This module aims to extract relevant features from the
source- and target-scene samples. Specifically, the DMS-GCN
model proposed in [16] is employed to separately extract
features from the source and target scene samples. Prior to
this, the Simple Linear Iterative Clustering (SLIC) algorithm
is applied to generate an initial region map, which reduces the
number of nodes and improves computational efficiency. Let
the output of the layer right before the final full connection
layer of the DMS-GCN model correspond to feature maps
s and ¢, for the source and target scenes, respectively. The
extracted features for each pixel are then obtained as:
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B. Feature Alignment Module

To achieve effective cross-scene classification, it is neces-
sary to impose constraints on the extracted features to reduce
domain differences between the two scenes. Additionally,
within each scene, further feature alignment enhances model
stability. Here, we align the extracted features both within a
single scene and across different scenes, following a widely
used principle in machine learning and pattern recognition:
intra-class feature similarity should be maximized, while inter-
class feature separability should be maintained. To this end,
this module first computes the feature discrepancy terms.

Suppose the data from X, and &X; belong to C' categories.
Let Cs and C; denote the sets of indices of the labeled data
in the source and target scenes, respectively, with C¥ and CF
representing the subsets of indices corresponding to samples
labeled as class k; for k = 1,...,C. By definition, | J$_, C¥ =
Cs and Uk 1CF = Cy. The intra-class discrepancies within
each scene and across scenes are measured by
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where
o D™ (respectively, Dj*™°) measures the intra-class fea-
ture discrepancy among source (respectively, target) scene
samples.
o D' measures the cross-scene intra-class feature dis-
crepancy between source and target samples;
e D™ js the total intra-class discrepancy across both
scenes.
Similarly, the total inter-class discrepancy (both within and
across scenes) is computed as

Ddlff Ddlft + Dgiff Ddlff (7)
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where DI = 5y ey e 9 = Sl DI =
py Eigcjf dject |£i = £/||,> and DI =3, , Miccr
Zjecf Hf; —f H The feature alignment loss is then formu-
lated as:

DSHIHC

i ()
which enforces inter-class distinctiveness and intra-class con-
sistency, ensuring proper feature alignment.

It is worth mentioning that this module requires a small
number of labeled target scene samples, and thus does not
apply when the target scene has no labeled samples in some
classes.

LFA =

C. Overall Loss Function

For the two integrated single-scene DMS-GCN sub-
networks, let the final softmax layers produce outputs p’ and
pt, which denote the predicted probability distributions for the
i-th source and target samples, respectively. The cross-entropy
loss functions for the source and target scenes are then given
by

Ly=—- ;(ys)Tlogpm Li=—o- ;(yt)Tlogpn

where y® and y! represent the true one-hot class labels. The
overall loss function is:

L =Ls+ Ly + ALga, ©))

where A is a hyperparameter used to balance classification and
domain alignment.

D. Active Learning Module

The goal of the AL module is to select a small subset
of highly informative target-scene samples, x,i & Cy, for
annotation. These samples are identified through a fusion of
multiple AL criteria, including entropy, confidence, margin,
and clustering, as described in the next section. Newly labeled
samples are then added to the training set, improving efficiency
and classification accuracy.

III. FUSION OF ACTIVE LEARNING STRATEGIES
A. Commonly Used Selection Strategies

Initially, there are n = n; — |C;| unlabeled samples in
the target scene. For each candidate sample in {zi};qc,,
the proposed network from the previous section, after initial
training, outputs a probability distribution over possible labels,
i.e., pi. Several commonly used selection strategies in the
literature rank these candidates for annotation, including:

o Entropy-based Sampling. The entropy of the
predicted probability distribution p! is H(zl) =
—(p}) T log pi, Vi & C;. Higher entropy indicates greater
uncertainty in the model’s prediction. Thus, this strategy
prioritizes samples with the highest entropy values.

« Confidence-based Sampling. The confidence Conf(x?)
is defined as the maximum probability in pi. Selecting
samples with the lowest confidence encourages the model

to learn in its least confident regions, thereby improving
sensitivity to classification boundaries.

o Margin Sampling. The margin Marg(zi) is defined as
the difference between the highest and second-highest
predicted probabilities in pi. Selecting samples with
the smallest margin targets those near the classification
boundary, which are typically the most challenging to
classify.

e Clustering-based Sampling. An unsupervised clustering
method (e.g., K-means) is used to partition the unla-
beled samples into C' clusters, Aj, ..., Ac. Samples are
then ranked based on their Euclidean distance from the
centroid of their assigned cluster, with those farthest
from the centroid prioritized for selection: dist(x}) =
¢ 0(xi € Ap)||ai — pill2, where py, represents the
centroid of cluster Ay, and § is the indicator function.
This strategy enhances diverse coverage of the entire data
space and helps avoid bias toward any particular region.

B. Fusion Method

Each of the aforementioned four selection strategies evalu-
ates the importance of sample from a different perspective, re-
flecting different preferences in selection. By integrating these
strategies, we can leverage their complementary strengths and
mitigate biases from individual strategies, resulting in a more
balanced and robust sample selection process.

Instead of directly fusing the final selection results, we
combine selection decisions from each strategy according to
the following two steps:

1) Selection Score Transformation: Each strategy evaluates
a sample based on its selection score, defined as

H (:E%), =1,
1 — Conf(x}), (=2,
1 — Marg(xi), (=3,
dist(z?), =4,
This transformation ensures higher scores correspond to higher
selection preference for all strategies. To enhance robustness,
for strategy ¢, we retain only the top m, highest-scoring
samples and set all other scores to zero. The adjusted scores
are then converted into selection probability distributions,
denoted as! g, = (qv;) € A" 1 using the softmax function:
eSe(})
Zi esi(mi) ’
2) Fusion of the Selection Probabilities: The final selection
probability is obtained by optimally fusing the four individual
probability distributions py, ¢ = 1,2, 3, 4. We define the fused

probability g as the solution to the following optimization
problem:

Se(my) = (10)

Qi = i=1,...,nk" (11)

4
min ngD(qg,q), s.t. Zwe =1lw, >0, (12)
qeami =t ¢
{we}ﬁzl

'A"™ denotes the probability simplex in R™:A™ = {p = (p;) € R" :
S pi=1,0<p; <1}

757



where:

e q=(q1,...,qnv) is the fused selection probability.

o wy is the weight assigned to gy, indicating the relative
importance of the ¢-th strategy. To ensure flexibility, the
weights {w,} can be predefined based on prior knowledge
or expert input. In this paper, we adaptively optimize
them using the same objective function to avoid manual
tuning.

e D(q,q) is a metric function that measures the dissim-
ilarity from each individual probability g, to the fused
probability gq.

We examine two different metrics for D in Problem (12):

o Squared Euclidean Distance: D(qs,q) = |q¢ — ql?
which is a classical measure in vector spaces. When the
weights are fixed, the fused probability g corresponds
to the weighted arithmetic average probability, a well-
established method for fusing discrete (categorical) dis-
tributions [17]. This fusion rule is also referred to as the
“Opinion Pool,” used to reach an agreement on multiple
opinions [18].

o x2-Divergence:

N2
D(gr.q) = (‘”’?) -1, (13)

which measures the dissimilarity between two probability
distributions in the probability simplex rather than in the
Euclidean space. It is worth noting that y2-divergence is
not a true distance metric in the rigorous mathematical
sense, as it does not satisfy the symmetry and triangle
inequality.

C. Alternating Optimization Algorithm for the Fusion

The objective function in (12) is non-convex jointly in g and
wy, but it is convex and easy to solve when one variable is fixed
while optimizing the other. Thus, an alternating minimization
approach can be employed to solve (12). At iteration step t,
the optimization proceeds as follows (where the superscript
(t) denotes estimators at this step):

1) With Fixed Weights {w,Et_l)}: Since D is convex in g,
the optimal g can be explicitly derived. When D is the squared
Euclidean distance, the optimal g corresponds to the weighted
arithmetic mean:

4
¢V =3 w Vq (14)
=1

When D is the y2-divergence, by the Lagrange method,

Zwét)(qe’i)z, i=1,...,n

4
15)
=1

S
|
e

where A = 221 Sy wét)(qm)Q is the normalizing

factor.

2) With Fixed Fused Probability q'Y): Given the fused
probability, the optimization of the weights reduces to a linear
programming problem

4
{wét)} = arg min ngt)wg, s.t. Zwe =1,wy >0, (16)

We =1 )

where dy) = D(q,q"), for ¢ = 1,2,3, 4, is computed using
either the squared Euclidean distance or the x?2-divergence.
This linear program can be efficiently solved using methods
such as the simplex algorithm.

The algorithm iteratively updates (14) and (16) (or alter-
natively, (15) and (16)) until convergence, yielding a solution
for (12). In our numerical experiments, the algorithm demon-
strates good empirical convergence performance.

IV. EXPERIMENTS

To evaluate the performance of the proposed method, we
conduct experiments using the RPaviaU-DPaviaC dataset,
which includes the ROSIS Pavia University (RPaviaU) scene
and the DAIS Pavia Center (DPaviaC) scene. These two scenes
share a common set of seven land cover classes. Our proposed
method, Cross-Scene multiscale GCN with a Fusion of Active
Learning strategies (CSGCN-FAL), is evaluated with two
variants: one using the squared Euclidean distance (CSGCN-
FAL1) and the other using the x?-divergence (CSGCN-FAL?2).

For comparative analysis, we consider several recent cross-
scene HSI classification methods, including DCFSL [10],
CMFSL [11], and DSDAN [7]. To ensure a fair evaluation and
save space, we do not include single-scene HSI classification
methods, as prior research has demonstrated that such meth-
ods generally underperform compared to those specifically
designed for cross-scene classification.

To reduce computational cost, in the experiments, we ran-
domly select 50 labeled training samples per class in the source
scene. For the comparative methods (which do not use AL),
only 5 labeled training samples per class are randomly selected
in the target scene. For our proposed method (CSGCN-FALI1
and CSGCN-FAL2) with AL, we initially select 2 samples per
class at random and then add 21 additional samples across all
classes through AL. Specifically, in the AL loop, we perform
a total of 21 rounds, each querying one unlabeled sample from
the target scene for annotation. It is worth noting that under
this setting, all considered methods use the same final number
of labeled training samples in both scenes. Each experiment
is repeated ten times, and the average accuracies are recorded.
All implementations are conducted using Python 3.8 with
PyTorch 1.11.0.

Table I presents the classification performance of all consid-
ered methods, with the highest values in bold and the second-
highest values underlined. The corresponding classification
maps (randomly chosen from one of the ten experiments)
are shown in Fig. 2. CSGCN-FAL?2 consistently achieves the
highest overall accuracy (OA), average accuracy (AA), and
Kappa coefficient. CSGCN-FAL1 follows closely but slightly
underperforms compared to CSGCN-FAL2. This performance
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TABLE I
CLASS-WISE CLASSIFICATION ACCURACIES AND OVERALL METRICS FOR
DIFFERENT METHODS ON THE RPAVIAU-DPAVIAC DATASET

Class DCFSLUY CcMFSL!"" DSDAN!!' CSGCN-FALI CSGCN-FAL2
1 0.8702 0.9226 0.9181 0.9397 0.9289
2 0.8664 0.8397 0.8658 0.8741 0.9151
3 0.9534 0.8211 0.8647 0.8827 0.9248
4 0.9863 0.9819 0.9683 0.8507 0.9864
5 0.9292 0.9202 0.9612 0.9562 0.9197
6 0.9602 0.9943 0.9074 0.9886 0.9675
7 0.9010 0.9127 0.8983 0.9340 0.9519
OA 0.9068 0.9099 0.9121 0.9317 0.9337
AA 0.9238 0.9132 0.9120 0.9180 0.9420
Kappa  0.8872 0.8907 0.8931 0.9168 0.9196

(d) DSDAN (e) CSGCN-FAL1 (f) CSGCN-FAL2

Fig. 2. Classification maps of the considered methods on CRPaviaU-DPaviaC
dataset

gap may be attributed to the fusion strategy in CSGCN-
FALI, where the Euclidean distance does not fully account
for the underlying structure of the probability simplex. Both
CSGCN-FALI and CSGCN-FAL2 outperform the other cross-
scene classification methods (DCFSL, CMFSL, and DSDAN)
in overall performance, demonstrating the effectiveness of
exploiting graph structures and utilizing AL. In each class, at
least one of the CSGCN-AL models achieves either the highest
or second-highest classification accuracy, further validating the
advantages of our proposed approach.

Due to space limitations, more experimental results on other
real-world datasets are not included here, but they demonstrate
similar advantages of our proposed method.

V. CONCLUSION

In this study, we proposed an efficient cross-scene HSI
classification network integrated with a novel AL module that
selects target samples for labeling through a fusion of multiple
sampling criteria. The base classifier is built upon the existing
DMS-GCN for single-scene classification, which extracts HSI

features at different scales from the source and target samples
separately. To adapt it for cross-scene HSI classification, we
introduced a feature alignment module and a cross-scene loss
function to mitigate domain shifts. In the AL module, a fusion
method with adaptive weighting was developed to balance the
contributions of four classical AL selection criteria, and an
alternating optimization algorithm was proposed to solve it.
Experiments on a real HSI dataset demonstrated the effective-
ness of the proposed method, highlighting the advantages of
integrating graph-based learning and active learning for cross-
domain HSI classification.
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