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Abstract—3D Gaussian Splatting (3DGS) has significantly
improved the efficiency and realism of three-dimensional scene
visualization in several applications, ranging from robotics to
eXtended Reality (XR). This work presents SAGE (Semantic-
Driven Adaptive Gaussian Splatting in Extended Reality), a
novel framework designed to enhance the user experience by
dynamically adapting the Level of Detail (LOD) of different
3DGS objects identified via semantic segmentation. Experimental
results demonstrate how SAGE effectively reduces memory and
computational overhead while keeping a desired target visual
quality, thus providing a powerful optimization for interactive
XR applications.

Index Terms—Extended Reality, Quality Adaptation, Gaussian
Splatting

I. INTRODUCTION

The rapid evolution of eXtended Reality technologies on
mobile and wearable platforms has increased the demand for
efficient 3D rendering techniques that provide highly immersive
and fluid user experiences. However, balancing computational
efficiency and visual quality introduces several challenges,
particularly in resource-constrained environments [1], [2].
Traditional approaches often rely on geometric simplification
or predefined Level of Detail strategies, which are chosen
according to user proximity and interaction [3], [4]. Previous
research has focused on adapting cognitive load [5], predicting
user actions to optimize training experiences [6], or minimizing
transmitted information [7], while only a few recent attempts
have been made using Deep Neural Networks [8]. The advent
of neural representation techniques, such as Neural Radiance
Fields (NeRF) [9] and 3D Gaussian Splatting [10], has
transformed 3D scene rendering. These methods enable implicit
scene representations that maintain high fidelity while offering
flexibility for on-demand rendering. While NeRF emphasizes
detailed and photorealistic scenes using a single neural network,
3DGS leverages Gaussian-shaped primitives for lightweight
yet differentiable scene management and rendering.

In this paper, we introduce SAGE (Semantically Adaptive
Gaussian Splatting in Extended Reality), a novel approach that
integrates semantic information in the optimization process of
3DGS. By performing semantic segmentation, SAGE dynam-
ically adjusts the 3DGS representation quality of individual
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scene components based on their spatial and visual importance,
using a quality prediction model to estimate the optimal
number of training iterations per region. This method leads
to a reduction in memory and computational overhead while
maintaining high visual quality. Through extensive evaluations
on different scenes of the Mip-NeRF360 dataset [11], we
demonstrate SAGE’s ability to significantly enhance efficiency
and scalability in 3DGS rendering. This ability proves to be
extremely suitable in XR applications, where rendering complex
scenes in real-time is essential, and selecting quality based
on scene semantics can be beneficial to ensure a better user
experience. SAGE is designed to optimize resource allocation
rather than maximize perceptual quality alone, maintaining
comparable visual quality with significantly lower memory
usage compared to other standard approaches.

II. RELATED WORK

The problem of quality maximization under bandwidth
constraints first appeared in image, audio and video com-
pression [13]. Later, several techniques in networking were
proposed for HTTP Adaptive Streaming (HAS) to modulate
the data stream while minimizing the quality decrement [14],
[15]. Recently, deep learning solutions were investigated to
address this problem in the video domain [16] and allowed
the extension to XR applications. Whenever referring to XR
applications, visual quality does not rely only on the modeling
accuracy for the synthetic 3D objects but also on the rendering
complexity and smoothness as viewpoint changes.

With the advent of 3DGS [10] as a powerful technique for
real-time rendering, it becomes possible to represent 3D scenes
via Gaussian primitives in a more flexible manner, even if the
representation of high-quality scenes remains computationally
demanding due to the large number of Gaussians required. To
address these issues, several techniques have been proposed so
far. LightGaussians [17] and Compact3D [18] use pruning and
quantization to reduce memory, while Multi-Scale 3DGS [19]
introduces multi-scale representations to enhance fidelity and
mitigate aliasing. OctreeGS [20] employ hierarchical structures
to optimize memory and computation, while FlOD [21] applies
a Level of Detail strategy for real-time rendering based on
device constraints.

Despite these improvements, experimental results have
shown that tayloring the computational effort to the specific
objects allows a better complexity saving while preserving
the visual quality. To this purpose, SAGE identifies the
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Fig. 1. SAGE pipeline. Starting from a set of 2D views V , SAGE retrieves the 2D semantics using DeepLabV2 [12]. In parallel, it constructs the Structure
from Motion point cloud, like in standard 3DGS. Then it processes the SfM point cloud at increasing resolution with proceeding iteration i. Differently from
standard 3DGS, SAGE follows the semantic masks provided on 2D views to partition the 3D point cloud and perform selective optimization of different
semantic categories. By setting a target quality (SSIMt) the optimization of each semantic category stops the optimization process when such target value is
achieved. The final render from selected viewpoint v is obtained as a composition of the scene categories optimized separately for target quality.

different objects by means of sematic segmentation, which
has also been investigated in 3D models reconstruction [22] or
transmission [23]. Recently, a few attempts have also been made
to integrate semantic understanding tasks within 3DGS [24] to
jointly improve understanding and reconstruction.

III. METHODOLOGY

Preliminaries: 3D Gaussian Splatting [10] is an explicit
radiance field technique for efficient, high-quality rendering. It
represents a scene using differentiable 3D Gaussian primitives
optimized to fit the scene’s geometry, capturing shapes and
features in a compact, expressive form. Given a set of images,
3DGS is initialized from a point cloud generated by a Structure
from Motion (SfM) algorithm, and then iteratively refined
through adaptive point densification and pruning, enabling
high-quality rendering.

Proposed Approach: SAGE utilizes semantic segmentation
to increase the 3DGS optimization performance on individual
objects and develop an adaptive quality system. Semantic
segmentation is applied to the input 2D views [12] assigning a
label l ∈ L to each pixel in every image v ∈ V . These labels
are then related to 3D points in the SfM reconstruction via the
estimated camera parameters, using a majority voting scheme
that resolves conflicts by assigning each 3D point the most
frequent label across its projections.

To perform the optimization, we iteratively compute pre-
defined quality metrics, such as PSNR and SSIM, for each
fixed viewpoint (rendered image) v and level of reconstruction
i, restricted to every semantic label l separately. These quality
metrics are computed with respect to dmin,l,v , which represents
the distance of the closest point assigned to semantic label l
with respect to the camera position, to be conservative in the
optimization process. Formally, given a fixed viewpoint v = ω,
the quality-constrained optimization problem is designed as
follows:

min
i

∑
l

Nl(i) s.t. SSIMl,i(dmin,l) ≥ SSIMt, ∀l ∈ L (1)

where i represents the minimum iteration of the 3DGS
algorithm to ensure the desired quality (with SSIMt denoting
the target SSIM value) is met for the semantic category l,
while minimizing the number of Gaussian primitives used.
Nl(i) denotes the number of Gaussians representing category
l at iteration i. The quality at iteration i is represented by
SSIMl,i and depends on the distance between the position of
the camera and the closest 3D point to the camera, with label l,
i.e., dmin,l = dmin,l,v|v=ω with a fixed viewpoint. As a result,
a parametric model can be fit for a target SSIMt:

SSIMl,i(dmin,l) =

{
K1 · e−γ1|dmin,l−µ1|α1 if dmin,l < β,

K2 · e−γ2|dmin,l−µ2|α2 if dmin,l ≥ β;
(2)

where the coefficients Kn, γn, µn, and αn (with n = 1, 2)
and the threshold β that separates the two distance regimes
are obtained by fitting the equation to the desired label l at
the level of reconstruction detail i (see Sec. IV and Fig. 3 for
clarity). This way, the model is able to predict for a target class
l at which iteration i the 3DGS algorithm should be halted to
meet the desired quality SSIMt. The operation is iterated on
all viewpoints v ∈ V , obtaining distance-dependent fitting. An
overall representation of SAGE is shown in Fig. 1.

Note that this technique is efficient in terms of computational
efficiency as it reallocates computational resources based on
semantic importance, while keeping visual quality sufficiently
high. This makes the semantic-based optimization of SAGE
applicable to many rendering systems, in addition to 3DGS.

Evaluation methodologies: In order to measure both the
adaptability and robustness of the proposed approach, two
types of evaluation tests were performed: (i) cross-view and
(ii) cross-scene. The (i) cross-view test focuses on synthesizing
a novel view starting from existing views of a single 3D scene
using the model for fitting different labels. The 3D scene
is partitioned into class-labeled 3D points by leveraging the
segmentation of 2D views and projecting onto the 3D point
cloud. Semantic masks are extracted by projecting back the
semantics from the 3D points to 2D onto the novel view, and
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TABLE I
AVERAGE RESULTS OF SAGE FOR SCENE “BICYCLE”. NUMBERS ON THE

HEADER DENOTE 3DGS ITERATION COUNTS.

5 000 10 000 15 000 30 000

SSIM # Gauss. SSIM # Gauss. SSIM # Gauss. SSIM # Gauss.

Bench 0.598 141k 0.635 234k 0.659 334k 0.682 336k
Bicycle 0.602 50k 0.658 111k 0.674 144k 0.688 146k
Grass-merged 0.438 287k 0.491 703k 0.521 972k 0.537 985k
Pavement-merged 0.585 163k 0.625 337k 0.642 422k 0.651 424k
Sky-other-merged 0.917 278k 0.920 456k 0.923 587k 0.923 578k
Tree-merged 0.540 1.4M 0.574 2.5M 0.594 3.2M 0.613 3.3M

Total 0.546 2.3M 0.598 4.3M 0.627 5.7M 0.647 5.8M

TABLE II
AVERAGE RESULTS OF SAGE FOR SCENE “GARDEN”. NUMBERS ON THE

HEADER DENOTE 3DGS ITERATION COUNTS.

5 000 10 000 15 000 30 000

SSIM # Gauss. SSIM # Gauss. SSIM # Gauss. SSIM # Gauss.

Dining table 0.828 211k 0.869 309k 0.879 379k 0.880 379k
Grass-merged 0.691 742k 0.776 1.1M 0.798 1.3M 0.804 1.3M
Pavement-merged 0.753 447k 0.805 682k 0.816 736k 0.818 736k
Potted plant 0.765 56k 0.808 82k 0.827 94k 0.829 94k
Tree-merged 0.688 1.2M 0.739 2.0M 0.749 2.3M 0.757 2.3M
Vase 0.847 14k 0.892 17k 0.902 18k 0.906 18k

Total 0.778 3.1M 0.826 4.9M 0.841 5.6M 0.848 5.6M

the model is optimized on the novel view according to the
desired visual quality. Once the new view has been synthesized,
the SSIM is evaluated on two levels: first, for the entire view
to check overall image quality, and second, for each semantic
mask to verify that the prediction is correct. The (ii) cross-
scene test examines whether a model trained on a semantic
category (e.g., grass-merged from “bicycle” scene) generalizes
to the same category in another scene (e.g., grass-merged
from “garden” scene). If the SSIM curve remains consistent,
the learned parameters and iteration values are transferable,
enabling a general optimization routine applicable to unseen
data.

IV. EXPERIMENTAL RESULTS

Experiments were conducted on the Mip-NeRF360
dataset [11] considering PSNR, SSIM, Learned Perceptual
Image Patch Similarity (LPIPS) [25] as quality metrics, and
the number of Gaussians (# Gauss.) to characterize the quality
and the complexity of the scene. SAGE was implemented
on top of the original 3DGS framework [10], with point
clouds of Gaussians saved and analyzed at intervals of 1000
iterations throughout the optimization process. Table I presents
the cross-view results for scene “bicycle” averaged across all
training images. The reported per-label evaluations allow us
to verify that there exist significant class-dependent variations:
sky-other-merged1 class consistently exhibits high SSIM values
(above 0.8) even at early iterations, while for others, SSIM
values improve progressively. The overall behavior of SSIM
versus iterations can be seen in Fig. 2 for scene “bicycle”. The

1-merged notation refers to labels which comprehend multiple related
COCO [26] classes mapped to a single class, following the standards of [27].
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Fig. 2. Mean SSIM over training iterations for individual scene components
of scene “bicycle”. Variations in optimization performance across semantic
categories are visible. Highly textured content (e.g., grass-merged) show lower
overall quality compared to smooth areas (e.g., sky-other-merged).

category-related quality appears to be related to the variation of
the content behavior within the same semantic category (e.g.,
sky-other-merged is quite uniform with low-frequency content
while grass-merged presents different textures depending on
the distance from the viewpoint). Visual quality is also affected
by the distance of each class from the camera. Using this
model, we created an iteration predictor capable of estimating
the level of detail necessary for each class to achieve the target
SSIMt. Table II reports the SSIM values for different iterations
for scene “garden”. Considerations similar to “bicycle” can
be made. The number of Gaussians and SSIM values evolve
differently for different semantic categories over time, but
interestingly, as for classes grass-merged and pavement-merged
that appear both in “bicycle” and “garden”, SSIM metric
increases proportionally with the number of Gaussians over
time. A cross-scene evaluation for classes grass-merged,
pavement-merged and tree-merged (see highlighted rows in
Tables I and II) showed that the model, trained on “bicycle”,
could generalize to “garden” with reasonable success. The
SSIM values remained consistent across both scenes, indicating
that SAGE can predict the appropriate iteration to achieve the
target SSIMt in the new scene. However, some variations were
observed in the prediction of the optimal iteration, suggesting
that scene-dependent factors affect the precision of the model.

Fig. 3 proves the model’s predictive power, enabling adaptive
reconstruction of scenes by integrating elements with varying
LOD. Three targets SSIM are selected for SAGE evaluation (i.e.,
0.5, 0.6, 0.7 for scene “bicycle”) and tested on both the original
training views and the novel synthesized perspectives, robustly
assessing our method’s capabilities. Our results show that the
SSIM follows a distance-dependent trend, where closer objects
undergo sharper SSIM variations. The proposed two-phase
decay model (Eq. 2) captures this effect, prioritizing foreground
detail while preventing excessive refinement of background
content. We use intermediate steps of 3DGS optimization rather
than the final optimized state to avoid fully optimizing 3DGS
and account for memory and processing constraints in real-
world XR applications. Halting the optimization at different
points per object reduces redundancy while maintaining high
perceptual quality. Table III highlights SAGE’s performance
for a specific view (i.e., “DSC8719”), showcasing the trade-
offs between visual fidelity and resource efficiency. Selected
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Fig. 3. SSIM as a function of the minimum distance for the semantic labels bench, bicycle and pavement-merged. Each curve represents data collected at a
different iteration i of 3DGS, with experimental data (dots) and fitted trends (lines). The SSIM generally increases with distance, reaching a peak before
stabilizing or declining, with higher iterations showing improved reconstruction quality and smoother trends.

TABLE III
QUANTITATIVE RESULTS ON SINGLE VIEW “DSC8719” OF SCENE “BICYCLE”. HEADERS IN SSIM SECTION DENOTE 3DGS ITERATION COUNTS.

Distance SSIMi # Gaussians Occupancy ↓

Min Avg 5 000 10 000 15 000 30 000 (3DGS) 3DGS SAGEt=0.5 SAGEt=0.6 SAGEt=0.7 3DGS SAGEt=0.5 SAGEt=0.6 SAGEt=0.7

Bench 2.615 4.621 0.587 0.697 0.742 0.750 336 632 141 804 141 804 334 433 83.5 MB 35.2 MB 35.2 MB 82.9 MB
Bicycle 3.046 4.358 0.632 0.713 0.759 0.758 146 103 50 965 50 965 111 799 36.2 MB 12.6 MB 12.6 MB 27.7 MB
Grass-merged 1.609 6.809 0.341 0.393 0.434 0.419 985 863 985 863 985 863 985 863 224.5 MB 224.5 MB 224.5 MB 224.5 MB
Pavement-merged 2.671 6.335 0.586 0.662 0.688 0.693 424 146 163 298 337 966 424 124 105.2 MB 40.5 MB 83.8 MB 105.2 MB
Sky-other-merged 8.980 27.192 0.805 0.794 0.795 0.803 578 378 278 139 278 139 278 139 143.4 MB 69.0 MB 69.0 MB 69.0 MB
Tree-merged 0.753 16.424 0.595 0.612 0.642 0.634 3 343 641 1 428 984 3 343 635 3 343 641 829.2 MB 354.4 MB 829.2 MB 829.2 MB

Total — — 0.531 0.579 0.615 0.617 5 832 994 3 049 053 5 138 872 5 477 999 1.45 GB 756.2 MB 1.27 GB 1.36 GB

PSNR: 21.764 LPIPS: 0.29 PSNR: 20.866 LPIPS: 0.39 PSNR: 20.934 LPIPS: 0.33 PSNR: 21.363 LPIPS: 0.30

3DGS [SSIM = 0.617] SAGE [SSIM t = 0.5] SAGE [SSIM t = 0.7]SAGE [SSIM t = 0.6]
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Fig. 4. Qualitative results on view “DSC8719” of scene “bicycle”.

TABLE IV
3DGS AND SAGE COMPARISON AT FIXED OCCUPANCY IN “BICYCLE”.

3DGS SAGE

Occupancy SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓

∼ 700 MB 0.533 22.057 0.38 0.557 22.497 0.27
∼ 1, 25 GB 0.599 22.594 0.24 0.581 22.669 0.24
∼ 1, 3 GB 0.612 22.629 0.23 0.618 22.816 0.19

iterations for each semantic category at each target SSIMt

are highlighted for t = 0.5, t = 0.6, t = 0.7 in green, yellow,
and orange, respectively (if the same iteration is selected for
more than one SSIMt, the values are highlighted with the
color of the highest iteration). Compared to the baseline 3DGS
(where all categories are optimized for 30 000 iterations),
SAGE reduces Gaussian count from 5.83M to 3.05M at
SSIMt = 0.5, lowering memory usage from 1.45GB to
756.2MB. By accounting for minimum distance in optimization,

SAGE prevents spread classes like sky-other-merged or tree-
merged from suffering reduced quality in close-up regions.
At a fixed occupancy/memory, SAGE achieves higher visual
quality in rendering, as clearly highlighted by the LPIPS
metric (Table IV). Finally, figs. 4 and 5 compare SAGE’s
qualitative results to groundtruth views and standard 3DGS, for
three targets SSIMt. Quality spreads differently across diverse
semantic categories; however, SAGE obtains similar quality for
every category with SSIMt = 0.7 while consistently reducing
the occupancy. PSNR and LPIPS results are also reported
under each scene, showing they are aligned with the SSIM
behavior. Note that being SAGE designed to optimize resource
allocation rather than maximize perceptual quality alone, it may
not always outperform 3DGS in SSIM and LPIPS. However, it
always maintains comparable visual quality with significantly
lower memory usage, extremely important for real-time XR
applications.
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Fig. 5. Qualitative cross-view results on “bicycle” and cross-scene results on ”garden”.

V. CONCLUSIONS

In this work, we presented SAGE, a novel strategy for
optimizing the rendering of 3D scenes driven by semantics. By
using a parametric model to predict the required iterations per
semantic region, our approach effectively balances performance
and resource usage, minimizing the number of Gaussians
while maintaining a target visual quality, which is crucial for
XR applications and other resource-constrained environments.
Through experiments on the Mip-NeRF360 dataset, SAGE
demonstrated not only to achieve significant memory savings
compared to the 3DGS baseline but also to be able to effectively
adapt the LOD of each semantic category within the 3D
scene, based on their visual characteristics. By isolating each
category and reconstructing the scene for a given SSIM value,
SAGE ensures smooth rendering at reduced computational
overhead. The flexibility and resource efficiency of the proposed
solution makes it a promising approach for large-scale 3D scene
rendering, especially for real-time XR applications. Future work
will include subjective evaluations to assess perceptual benefits
of SAGE’s semantic adaptation.
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