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Abstract—Multimodal MR-US registration is critical for
prostate cancer diagnosis. However, this task remains challenging
due to significant modality discrepancies. Existing methods often
fail to align critical boundaries while being overly sensitive to
irrelevant details. To address this, we propose an anatomically
coherent modality translation (ACMT) network based on a
hierarchical feature disentanglement design. We leverage shallow-
layer features for texture consistency and deep-layer features for
boundary preservation. Unlike conventional modality translation
methods that convert one modality into another, our ACMT
introduces the customized design of an intermediate pseudo
modality. Both MR and US images are translated toward this
intermediate domain, effectively addressing the bottlenecks faced
by traditional translation methods in the downstream registra-
tion task. Experiments demonstrate that our method mitigates
modality-specific discrepancies while preserving crucial anatomi-
cal boundaries for accurate registration. Quantitative evaluations
show superior modality similarity compared to state-of-the-art
modality translation methods. Furthermore, downstream regis-
tration experiments confirm that our translated images achieve
the best alignment performance, highlighting the robustness of
our framework for multi-modal prostate image registration.

Index Terms—Modality Translation, MR-US Registration,
Prostate Cancer, Diffusion Models, Multimodal Image Registra-
tion, Unsupervised Learning

I. INTRODUCTION

Prostate cancer is a leading cause of death among men
worldwide [1], with accurate diagnosis relying heavily on
advanced imaging techniques. Magnetic Resonance Imaging
(MRI) and Ultrasound (US) are widely used in prostate cancer
imaging, each offering unique advantages: MRI provides high
soft-tissue contrast for lesion detection, while US enables real-
time guidance for biopsies. However, their significant differ-
ences in anatomical representation pose a major challenge for
multi-modal registration, which is essential for combining their
complementary strengths.

To address modality discrepancies, some methods employ
image segmentation, aligning segmented regions to avoid
direct cross-modal registration challenges [2], [3]. However,
these approaches require extensive annotated data, which are
labor-intensive and scarce, limiting their practical applica-
tion. To overcome these limitations, we previously proposed
a Partial Modality Translation (PMT) approach [6], which
established an intermediate modality to bridge MRI and US
domains. While PMT improved texture similarity, it does
not truly achieve customized modality translation and retains
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excessive details irrelevant to registration. This oversight left
room for improvement in the registration results.

Building on this foundation, we propose a novel hierar-
chical feature disentanglement method for anatomically co-
herent modality translation (ACMT). Through a customized
intermediate modality design, ACMT logically fulfills the
goal that PMT failed to achieve. The ACMT advances PMT
by addressing two key limitations: (1) explicitly preserving
boundary information while maintaining texture consistency,
and (2) relaxing the requirement for photorealism so as to
reduce the preservation of unnecessary and overly detailed
textures within the prostate. Specifically, we leverage the
distinct characteristics of shallow and deep features in con-
volutional networks. Shallow-layer features, which primarily
capture low-level texture information, are processed with
larger convolutional kernels. This design is motivated by
the fact that larger kernels can effectively model broader
texture patterns, which are essential for achieving cross-modal
consistency [14]. In contrast, deep-layer features, which are
more sensitive to high-level structural details such as shapes,
are processed with smaller convolutional kernels. Smaller
kernels are better suited for capturing fine-grained details and
precise anatomical structures, making them ideal for boundary
preservation [8]. Additionally, we enhance boundary extraction
using Sobel filtering to further improve structural alignment
[10]. In addition, by removing the adversarial loss used in
PMT, we further reduce the emphasis on photorealism, as the
intermediate modality does not require highly realistic details.
This design ensures that the output retains only the boundary
information most relevant for registration, while promoting
texture consistency and suppressing modality-specific anatom-
ical detail discrepancies. As a result, the difficulty of cross-
modal registration is significantly reduced.

In the subsequent sections of this paper, we will provide
a comprehensive explanation of the mathematical foundations
and network architecture of the proposed method in Section 2.
Section 3 will present both objective and subjective analyses
of the results, demonstrating the effectiveness of our approach.
Finally, we will conclude with a summary of our contributions
in the last section.

II. PROPOSED METHOD

In this section, we first introduce the theoretical foundation
of our method, which is based on a Diffusion Schrédinger
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Bridge. Following this, we provide a detailed explanation of
the overall workflow of the proposed ACMT framework, as
illustrated in Fig. 1.

A. Schrodinger Bridge based Diffusion Model

We design this network by leveraging a Schrodinger Bridge
based (SB) diffusion framework [4]. It is inspired by optimal
transport (OT) theory [5], [12]. Formally, the SB problem
seeks to find the optimal stochastic process that transforms
a source distribution Py to a target distribution P; through
intermediate distributions P, over time t, as defined by:

B — {argmin Dy (P ||W°)} with t~[0,1], (1)
Py

where W7 denotes the Wiener measure with variance o.
This formulation aims to minimize the Kullback-Leibler (KL)
divergence between the process distribution P; and the refer-
ence measure W at each timestep. The collection of opti-
mal distributions {P;°B} constitutes the Schrodinger Bridge
connecting Py'? and PB. Although SB is theoretically a
continuous process, Conditional Flow Matching (CFM) for-
mulation allows us to address it in a discretized manner
[4], [11]. The CFM formulation establishes that for any two
distributions P2 and PP in the SB where [t,,, t,,] C [0, 1],
the intermediate distribution at time ¢ € [t,,t,] follows a
Gaussian distribution:

p(Xe| Xy, Xt,) = N(Xt‘thtn + (1 —w) Xy,

we(1 — wy)o(ty — tm)I), )

Xtm ~ P Xn ~ PfSB and wy =
ttit Furthermore the joint drstrrbutlon PS B between any
two timesteps can be obtained through an entropy -regularized
OT problem:

where X; ~ P

PN =argmin Erx,  x, (X4,

tm,tn

- X, %]

= 20(th —tm)H(Xy,,, Xt,), 3)

where H denotes the entropy function. This formulation
enables the determination of the optimal terminal distribution
PS B given any initial distribution PS 5. Subsequently, using
Equatlon (2), we can compute any intermediate state PB
along the Schrodinger Bridge between the P°F and PSP.

B. Diffusion Process via CFM formulation

Since the training of our model relies on inputs generated
via a diffusion process, we first provide a comprehensive
explanation of the diffusion process that forms the foundation
of our framework. This diffusion process applies of our
modality translation network. However, it is used in evaluation
mode with all parameters frozen. To be more specific, we
hypothesize the existence of an ideal intermediate modality
that focuses primarily on boundary information while disre-
garding texture details. Through careful network design and
loss function formulation, our framework learns to transform
both MR and US images into this target modality. This process

is achieved by constructing Schrodinger Bridge from either
MR PME distribution or US distribution PY¥ to a single
intermediate modality P;.

As illustrated in the Diffusion Process (purple block) in
Fig. 1, let x;, € P, represent an intermediate state along
the Schrodinger Bridge at time ¢; € [0, 1]. Our network learns
to map x;; to the terminal state x; € P;. By using the CFM
formulation as shown in Equation 2, the next state Tt could
be computed as:

Ty = Wiy 1 X1 + (1 — wt_7.+1):ctj + N(O, ()éj+1[), (4)

% is the interpolation weight balancing

ry and 4, a4 = ujtjﬂ(l wy,,,)(1 —t;)o controls the
noise magnitude, and (0, aj 1) adds Gaussian noise scaled
by a;ii.

This iterative process begins with x;, = x, the source MR
or US image, and progressively transforms it towards x,.

where wy, |, =

C. Training Process

The training process begins with inputs generated by a
diffusion process. As shown in the Training Process (left
part of Fig.1), during training, we implement the following
procedure for each MR-US image pair:

1) Randomly select ¢; from the predefined time step pool

{to,t1,ta,...,tr}, where each ¢; € [0, 1].
2) Using the network in evaluation mode (with all param-
eters frozen): generate x;, through the diffusion process
as described in the purple block of Fig. 1
3) Switch the network to training mode:
o Compute the transformation from z;, to z;
o Calculate loss
« Update network parameters through backpropaga-
tion

Through this training strategy, the network learns to trans-
form any intermediate state z;, to the target modality zi,
effectively capturing the mapping along the entire Schrédinger
Bridge. By breaking down the transformation into iterative
steps, it ensures gradual refinement of the target modal-
ity while preserving critical anatomical information. This
approach is particularly advantageous for medical imaging,
where the complex relationship between source and target
modalities requires robust solutions.

D. Loss Functions

Recent studies have demonstrated the remarkable capability
of diffusion models in extracting discriminative features from
images [7], [13]. Building upon this observation and the well-
established understanding that shallow layers of neural net-
works are more sensitive to texture information while deeper
layers capture boundary details [8], we design a hierarchical
feature disentanglement loss to achieve both texture consis-
tency and boundary preservation in our modality translation
framework.

As shown in the Hierarchical Feature Disentanglement part
of Fig. 1, let f; and f¢ denote the shallow and deep feature
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Fig. 1: Hierarchical Feature Disentanglement framework based on a Diffusion Model

extraction functions of our network, respectively. Given an
input image x( (either MR or US), the shallow and deep
features are extracted as:

F§ = f(zv0), Fo= f(zo). &)

Similarly, for the translated image x; in the intermediate
modality Pj, the corresponding features are:

1= fi(z), F{=fi(x). (6)

1) Texture Consistency Loss: To ensure texture similarity
between the translated MR and US images in the intermediate
domain, we further process the shallow features F3™ " and
Fi’US using a large convolutional kernel (7 x 7) because larger
kernels are known to be more effective at capturing general,
global features such as texture patterns due to their wider
receptive fields. The texture consistency loss is formulated as:

Lo = [Crar BV — Con®379)°, )

where C7.7(-) represents the 7 x 7 convolution operation, and
|| - || denotes the L2 norm.

2) Boundary Preservation Loss: To preserve the anatomical
boundaries of the original images, we process the deep features
Fgl and F{ using a smaller convolutional kernel (3 x 3)
followed by a Sobel filter. This design choice is motivated
by the fact that smaller kernels are particularly effective at
extracting fine-grained features, such as edges and boundaries,
due to their ability to focus on localized regions and capture

high-frequency details. The boundary preservation loss for MR
and US images is defined as:

Lliay = |[S(Caxs(FEM) = SCana (B3| L ®)

‘Cboundary HS(C?)X?)(F?’US)) - S<CSX3(F3,US))H1 , 9
where Csx3(-) denotes the 3 x 3 convolution operation, S(-)
represents the Sobel filter, and || - ||; is the L1 norm. The total
boundary preservation loss is:

(10)

Eboundary ([’boundaly + ‘Cboundary)

3) SB Loss: To ensure that the translation process follows
the optimal transport path defined by the Schrodinger Bridge,
we introduce the SB constraint loss based on the joint distri-
bution P75 following the theory in equation 3. For MR and
US images, the SB loss is defined as:

Lg"(0:,t:) oy 7]

= ]E(zMR zMR. [HSL‘MR

1D
—20(1—t; )H( MR x{\/IR%
L85 Oust) = B apsy (Il —at*17)
—20(1 —t;)H(xy, Us Us).
where 218 = fo (2MB|zMRY and 25 = f5 (275]2V5) are

the terminal states predicted by the network. The total SB loss

is then:
Lsg =

(cy" + £5) . (13)

N

772



The overall loss function combines the texture consistency
loss, boundary preservation loss, and the SB loss:

Etolal = /\textureﬁtexture + Aboundaryﬁboundary + )\SBACSB (14)

The weighting coefficients Awexwre> Aboundary> and Agp are
carefully tuned to balance the contributions of each loss
component, ensuring that the network simultaneously achieves
texture consistency, boundary preservation, and optimal trans-
port.

III. RESULTS AND EVALUATION

1) Dataset: 3D MR and US paired images were provided
by Southmead Hospital Bristol. The MR images are T2-
weighted volumes, while the 3D US images are derived from
biopsy procedures. To ensure consistency, all volumes were
preprocessed to focus on the prostate region while retain-
ing relevant surrounding structures. Additionally, to enhance
generalizability and robustness, we applied data augmenta-
tion techniques such as flipping and rotation. To balance
computational feasibility and anatomical fidelity, all volumes
were standardized to a resolution of 128 x 128 x64 pixels. The
dataset was partitioned into an 80% training set and a 20%
test set, and all experiments employed cross-validation.

2) Evaluation: We evaluated both the quality of modality
translation and the corresponding registration performance us-
ing the same registration model, FSDiffReg [9]. We compared:
(1) registration on original MR-US images, and (2) registration
on modality-translated results from state-of-the-art (SOTA)
approaches, including UNSB [4], an ICLR 2024 modality
translation method, and PMT [6], our previously proposed
method that focuses on texture similarity.

To assess the quality of modality translation, we employed
two widely-used metrics: FID and KID. For registration evalu-
ation, our experts manually segmented the prostate on several
key frames for each test case to create ground-truth masks.
The generated deformation fields, based on different modality
translation methods, were applied to warp these masks, and
the results were scored with:

« Dice Similarity Coefficient (DSC): Defined as %
this metric quantifies the volume overlap between the
warped mask X and the ground-truth mask Y.

« Intersection-over-Union (IoU): Given by B((Bg, IoU

provides a stricter assessment of boundary alignment by

measuring the ratio of the shared to the combined volume.

o Average Surface Distance (ASD): This metric reports
the mean Euclidean distance between the surfaces of the
warped and ground-truth segmentations.

The experimental results demonstrate that our method
achieves the best FID and KID scores, as shown in Table I.
Specifically, our approach reduces the FID by 65.91% and
the KID by 83.93%, outperforming UNSB approximately 10
times and 12 times, respectively. Compared to our previously
proposed PMT method, our current method shows further
improvements in both metrics, highlighting its superior perfor-
mance in modality translation. On the other hand, as shown
in Table II, our ACMT framework attains the best overall

TABLE I: Quantitative evaluation of modality translation
quality using FID and KID (lower is better).

Method FID | (decrease by 1)  KID | (decrease by 1)
Original 404.88 0.56

UNSB 377.92 (6.66%) 0.52 (7.14%)
PMT 170.02 (58.01%) 0.11 (80.36%)
ACMT(Ours) 138.01 (65.91%) 0.09 (83.93%)

TABLE II: Quantitative evaluation of registration performance
based on different modality translation methods, all registered
using a consistent approach.

Method DSC1t+ 1IoU?T ASDJ
Original 0.92 0.87 10.74
UNSB 0.92 0.88 12.83
PMT 0.95 0.91 9.18
ACMT (ours) 0.95 0.90 6.82

registration results, leading all methods in DSC and ASD.
While its IoU is only 0.01 below that of PMT, ACMT lowers
ASD by 25.7 % compared with the runner-up, demonstrating
superior surface alignment. These findings confirm that ACMT
produces more anatomically faithful intermediate representa-
tions and yields substantially higher registration accuracy than
either UNSB or PMT-based variants.

Visually, we randomly selected two patients to illustrate the
modality translation and image registration comparison. As
shown in Fig. 2, Our method maximizes the similarity within
the prostate interior while preserving boundary information
that is most relevant for registration. At the same time, it sup-
presses unnecessary internal texture details that could mislead
the registration process. This advantage is further validated
in the registration results shown in Fig. 3. In particular, in
the second row, within the red boxes, our method is the only
one that achieves relatively smooth registration, while all other
methods exhibit noticeable discontinuities. Similarly, in the
first patient case (top row), although all modality translation
approaches help improve the smoothness in the red-boxed
region, the yellow boxes highlight that our method introduces
the least over-deformation. This suggests that our estimated
deformation field is the most realistic and anatomically plau-
sible among all methods.

IV. CONCLUSION

In this work, we propose a novel ACMT method for modal-
ity translation between MR and US images using a hierarchical
feature disentanglement idea. We leverage shallow features
to ensure texture consistency and deep features to preserve
anatomical boundaries, resulting in anatomically coherent
pseudo-representations. Our unsupervised framework achieves
customized modality translation, effectively removing irrele-
vant information from source images that would otherwise
hinder cross-modal registration. Experimental results show that
our framework consistently outperforms SOAT methods in
both modality translation and registration, achieving superior
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Fig. 2: Modality translation results for two patients (two rows), showing original US and MR images, UNSB translation, and
intermediate translation from PMT and ACMT.

Fig. 3: Registration results for two patients. Each row corresponds to one patient and displays the original US and MR images,
followed by registration results using FSDiffReg applied to the original MR-US pair, as well as to images translated by UNSB,
PMT, and our ACMT methods. Results are shown in a chessboard layout for visual comparison.

performance in both quantitative metrics and visual assess-
ments.
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