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Abstract—This paper presents a novel multimodal framework
for automatic cued speech recognition (ACSR) based on a
Conformer architecture that directly processes whole upper-body
video frames, eliminating the need for explicit segmentation
or synchronization of hand and lip regions. Unlike prior ap-
proaches that separately process hand and mouth cues, our model
jointly learns appearance and skeletal representations, effectively
handling hand-lip asynchrony. Our framework consists of two
branches (streams): (i) an appearance-based stream, utilizing
the ResNet18 model for RGB feature extraction, and (ii) a
skeletal-based stream, employing a modulated graph convolu-
tional network (GCN) to process 3D joint coordinates extracted
via MediaPipe. To learn temporal dependencies, we integrate a
temporal convolutional network (TCN) for short-range temporal
modeling and a Conformer encoder for long-range sequence
learning. In addition, to enhance feature alignment and improve
phoneme sequence learning, we incorporate an auxiliary loss,
ensuring robust multimodal fusion. Extensive evaluations on
three benchmark cued speech datasets, including French, British
English, and Mandarin Chinese, demonstrate that our model
achieves state-of-the-art performance, outperforming existing
approaches.

Index Terms—cued speech recognition, 3D skeleton, graph
convolutional network, Conformer, alignment module

I. INTRODUCTION

Cued speech (CS) constitutes a visual-based communication
tool introduced by Cornett [1] to enhance speech percep-
tion for individuals who are deaf or hard-of-hearing. Unlike
conventional lipreading, which is often ambiguous due to
the many-to-one mapping between phonemes and visemes,
CS provides an unambiguous visual representation of spoken
language by coupling lip articulation with distinct hand config-
urations and placements. In particular, consonants are encoded
through distinct hand gestures, while vowels are represented
by specific hand positions relative to the mouth, together with
mouthing patterns [2]. Figure 1 illustrates the encoding process
for French CS, where eight different handshapes at five unique
positions are employed to cover its phonemic inventory [3].

Performing ACSR from videos constitutes a challenging
task due to: (i) the multimodal complexity of jointly process-
ing both manual and non-manual cues simultaneously, while
handling the inherent asynchrony between them (hand cues
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Fig. 1. French Cued Speech: Hand shapes and positioning for consonants
and vowels (modified from [3]).

often lead the corresponding lip movements); (ii) the articu-
lation variability across cuers, differences in video recording
conditions and occasional articulation occlusions; and (iii) the
limited availability of large-scale annotated CS datasets [4]–
[8].

The first attempts to address ACSR in the literature re-
lied on artificial markers and colored gloves in order to
facilitate hand and lip tracking, simplifying segmentation in
controlled environments [9]. Traditional recognition systems
then mapped hand-crafted visual features to phonemes using
GMMs or HMMs. Such approaches, however, struggled to
generalize beyond controlled settings [9], [10]. As computer
vision techniques evolved, researchers moved towards mark-
erless tracking methods, for example Kanade-Lucas-Tomasi
lip tracking along with statistical segmentation techniques
for hand tracking, such as Adaptive Background Mixture
Models [4], [11], [12]. In terms of feature extraction and
classification techniques, recent ACSR works combine CNN-
based visual feature learners [13]–[15] with hybrid classifiers,
such as GMM-HMMs [4], [12], or recurrent neural networks in
conjunction with CTC decoders [11], [13], [16]–[18]. Various
works investigate skeletal-based body representations [16],
[17], employing pose estimation models [19]–[22] to de-
duce joint coordinates from the hands and lips, while others
combine hand positioning relative to the mouth with both
appearance and skeletal features [15]. Still, aligning the hand
and mouth modalities remains non-trivial, with some methods
introducing algorithmic fusion schemes to dynamically syn-
chronize hand and lip features [13], [14].
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Fig. 2. Architecture of the proposed ACSR system that integrates both RGB and skeletal streams to predict phoneme sequences. The system utilizes a
ResNet18 for appearance feature extraction, a modulated GCN for skeletal representation, and a 1D-CNN/Conformer network for sequence learning. The final
prediction is generated using CTC loss functions along with an auxiliary loss to enhance both long-range and short-range phoneme alignment.

To improve upon these approaches, our early work in [3]
introduced a multi-stream 3D-CNN front-end, coupled with a
time-depth separable convolutional encoder with an attention-
based decoder. This model performed direct fusion of the
modalities without explicit synchronization, allowing the net-
work to implicitly learn the hand-lip timing interaction. Build-
ing on this, our more recent work has turned to human pose
estimation models [23], which provide structured representa-
tions of hand and lip movements by extracting joint coordi-
nates from these regions. Such skeletal-based representations
enhanced the modeling of spatial relationships between lip and
hand cues, offering a more robust way to align their features.

Here, in this paper, we extend our previous work by
introducing several novel components in our approach. First,
we employ the ResNet18 model [24] as the CNN backbone
for RGB data feature extraction, allowing for efficient repre-
sentation of spatial CS information. Second, we incorporate
a modulated GCN [25], [26] to model skeletal features,
leveraging the MediaPipe model to extract 3D joint coor-
dinates. Modulated GCNs can learn meaningful geometric
relationships that are not easily captured by raw RGB data
features, also enabling a more effective representation of
hand placement relative to the mouth, compared to previous
methods that only relied on coordinate-based embeddings.
Third, for sequence learning, we integrate a TCN for short-
range modeling and a Conformer encoder [27] for long-range
sequence learning in CS videos. In particular, the Conformer
encodes global temporal relationships through attention, while
modeling local context via convolution, thus providing a struc-
tured and effective approach to capturing both local and global
temporal dependencies. In addition, Conformers can better
generalize with limited data, thereby mitigating the impact of
CS data scarcity. Fourth, to ensure robust sequence learning,
we employ well-established loss functions, further enhancing
the performance of the temporal modeling components. In
particular, we introduce an auxiliary loss (KL-divergence)
that serves as a regularization mechanism, ensuring feature

consistency across modalities and enabling robust multimodal
fusion.

In summary, the key contributions of this work include: (i)
the development of an innovative multimodal ACSR frame-
work that integrates both appearance and skeletal information
from whole upper-body frames, unlike prior approaches that
process hand and lip regions separately; (ii) the introduction
of a modulated GCN for more effective skeletal feature repre-
sentation; (iii) the employment of a Conformer for sequence
modeling, providing robust handling of long-range dependen-
cies; and (iv) the incorporation of an auxiliary loss to optimize
multimodal fusion and improve phoneme sequence learning.
It is worth noting that our work represents the first ever use
of GCNs, Conformers, and the KL-divergence loss function to
the problem of ACSR in the literature.

Experimental results demonstrate that our model outper-
forms previous approaches, achieving state-of-the-art recog-
nition on three benchmark CS datasets: French [7], British
English [5], and multi-cuer Mandarin Chinese [6]. Specifically,
our model yields absolute error reductions of 9.45%, 10.19%,
and 7.91% on the three datasets, respectively, compared to the
next-best results in the literature. Note that we also report a
cuer-independent ACSR result in our experiments.

II. THE PROPOSED MULTI-MODAL FRAMEWORK

To tackle ACSR, we introduce a novel multi-stream ar-
chitecture, as depicted in Figure 2. The system consists of
two branches (streams): (i) an appearance-based stream, which
employs a 2D-CNN for visual feature extraction; and (ii) a
skeletal stream, which processes 3D skeletal joints using a
modulated GCN. In both branches, the modules are followed
by a 1D-CNN and a Conformer encoder to model both
spatial and temporal dependencies. The two streams are trained
independently using an alignment module that relies on CTC
loss functions and an auxiliary KL-divergence loss, ensuring
effective stream fusion during inference.
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A. Appearance Modeling

Unlike our previous works [3], [23], where the hand and
mouth regions were processed independently, our method
preserves the holistic spatial information of visual cues.
Specifically, our model processes the entire upper-body re-
gion, enabling the simultaneous capture of both hand and
mouth articulations without requiring explicit synchronization
between the two regions. To extract the upper-body area, we
utilize the MediaPipe holistic human pose detector [21], which
estimates 543 keypoints across the body, including 33 for the
torso, 468 for the face, and 21 for each hand. In particular,
a bounding box is computed based on the minimum and
maximum x and y coordinates of the relevant keypoints. If the
MediaPipe detector fails, missing positions are replaced with
the last detected ones. To extract spatial feature embeddings
from the upper-body region, we use a ResNet18 model [24]
pretrained on ImageNet [28]. Upper-body images are resized
to 256×256 pixels before being fed into the network. The
output feature maps undergo global average pooling, yielding
a 512-dimensional (dim) vector per frame.

B. Graph-Based 3D Skeletal Modeling

To enhance the effectiveness of our framework, we incor-
porate a supplementary stream that processes the skeletal data
of the cuer. This stream operates on 3D joints deduced from
MediaPipe [21], utilizing a GCN-based module to capture the
spatial dependencies between articulatory joints. In particular,
we employ a modulated GCN [25], [26] coupled with a self-
attention mechanism [29]. Unlike traditional pose learning
methods that might rely on a large set of joints, our model
simplifies the skeletal graph by retaining only the most relevant
3D joints. Specifically, we focus on 10 joints for each hand
and 7 for the upper-body, including 3 facial joints (see also
Figure 2), which are critical for accurate phoneme recognition.
Once these 27 3D joints are extracted, a graph G = (V, E) is
generated, where V denotes the set of 27 joints serving as
nodes, and E defines the edges connecting these nodes. Each
node i is associated with a feature vector qi ∈ RD, where
D = 3, representing its position in the 3D space. Subsequently,
the graph is passed through a modulated GCN, where the
network learns the complex dependencies between the joints.
The GCN uses node-specific learnable modulation vectors to
adapt a shared weight matrix, and employs affinity modulation
by learning a mask over the adjacency matrix to better capture
task-relevant joint relationships.

To further refine the model’s ability to capture dynamic
joint interactions, we integrate a self-attention mechanism into
the GCN. This enables the network to dynamically focus
on important features across spatial, temporal, and channel
dimensions. To improve generalization and prevent overfitting,
we incorporate a DropGraph technique [30], which randomly
drops edges (20%) in the graph during training. Our system
employs 10 GCN layers, each augmented with a self-attention
mechanism. The resulting skeletal representations undergo
global average pooling, resulting in a 512-dim feature vector
per frame.

C. Temporal Sequence Modeling

To model both short-range articulation patterns and long-
range phonetic dependencies, the extracted feature maps from
both branches are each processed separately by a temporal
modeling pipeline, consisting of a temporal convolutional
layer (1D-CNN) followed by a Conformer encoder [27]. The
Conformer block is composed of four key modules stacked
together: multi-head self-attention, convolution, and two feed-
forward modules. This hybrid structure allows the model
to efficiently capture both long-range phoneme dependencies
and local articulatory patterns. The self-attention mechanism
processes the input sequence s ∈ RT×512 by projecting
it into queries (Q), keys (K), and values (V) via linear
transformations. These are split across nh attention heads,
yielding Qh,Kh,Vh ∈ RT×(512/nh) for each head h. Each
head computes scaled dot-product attention independently as:

attnh =
Qh(Kh)>√

512/nh

, where attnh ∈ RT×T .

The attention scores attnh are normalized via softmax to
produce weights, which are then applied to the corresponding
values Vh. The outputs from all heads are concatenated and
projected through a final linear layer. Local feature extraction
is further refined by the Conformer’s convolutional module,
while its dual feed-forward layers maintain a balance between
local and global context. Our sequence model comprises
12 stacked Conformer blocks. The final representations are
projected via a fully connected layer followed by softmax,
yielding phoneme probability distributions.

D. Multimodal Alignment and Training Strategy

The appearance and skeletal modalities are trained indepen-
dently using a CTC loss LBE

CTC , applied to the back-end pre-
dictions for phoneme alignment without requiring frame-level
annotations. To improve temporal modeling, an additional
CTC loss LFE

CTC is applied to front-end posteriors derived from
short-range features processed by the 1D-CNN and a fully con-
nected layer with softmax. Inspired by [31], we also add a KL-
divergence loss LV = KL(softmax(DFE), softmax(DBE)) to
align front-end and back-end distributions. The final objective
is: LM = LBE

CTC + LFE
CTC + 0.5LV .

E. Fusion and Inference Strategy

During inference, the appearance and skeletal modalities
are combined at the probability level through a late fusion
strategy. In particular, each branch independently processes
input sequences through its respective 1D-CNN and Con-
former encoder, generating modality-specific predictions. The
posterior probability distributions produced by the final fully
connected layer of both streams are then merged using a
weighted fusion scheme. Specifically, each modality is as-
signed a distinct weight, heuristically chosen based on its
validation performance, ensuring that the more reliable modal-
ity contributes more significantly to the final prediction. In
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TABLE I
PER (%) COMPARISON FOR DIFFERENT MODALITIES ACROSS DATASETS.

Dataset RGB Skeletal Both

French 12.40 18.60 11.25
British 20.32 31.52 18.41
Mandarin 9.27 12.47 6.89

TABLE II
ABLATION STUDY EVALUATING THE IMPACT OF FEATURE LEARNERS,
SEQUENCE LEARNING AND AUXILIARY LOSS FUNCTIONS ON ACSR

PERFORMANCE REGARDING THE RGB STREAM ALONE. THE EVALUATION
IS CONDUCTED IN TERMS OF PER (%) ON THE FRENCH CS DATASET.
Appearance
Features

Sequence
Learning

LBE
CTC LFE

CTC LV French

VGG

TCN/LSTM X X X 13.23
TCN/Transformer X X X 14.41
LSTM X X X 16.11
Transformer X X X 17.58

ResNet18

TCN/LSTM X X X 12.97
TCN/Transformer X X X 13.56
LSTM X X X 15.27
Transformer X X X 16.78
TCN/Conformer X 22.94
TCN/Conformer X X 14.89
Ours X X X 12.40

particular, the weighted sum of these posteriors is computed
as: pfused = 1.0papp + 0.8pskel.

III. EXPERIMENTAL FRAMEWORK

We evaluate our proposed approach on three CS datasets:
French [7], British English [5], and Mandarin Chinese [6].
For the French CS dataset, we follow the official data split,
using 979 videos for training, 108 for validation, and 108
for testing. This dataset contains high-resolution (1920×1080)
videos at 60 fps, representing 34 phonetic classes. The British
English CS corpus consists of 98 sentence-based videos, and
we employ a 5-fold cross-validation strategy, dividing the
data into 60% training, 20% validation, and 20% testing. The
videos are recorded at 1280×720 resolution with a frame
rate of 25 fps, encoding 44 phonemes. Finally, the Mandarin
Chinese CS dataset includes 4,000 videos (1,000 sentences)
from 4 different cuers, captured at 1280×720 resolution and
30 fps. For the latter dataset, we evaluate our model under two
experimental setups: (i) A multi-cuer (MC) split, where the
dataset is divided into 4 folds with 60% allocated for training,
20% for validation, and 20% for testing, and (ii) a cuer-
independent (CI) split, where training and validation data come
from three cuers, while the fourth cuer’s data are exclusively
used for testing. This process is repeated four times, reporting
the average performance across all folds.

Our model is trained for 50 epochs with a batch size
of 2, employing the Adam optimizer [32] with an initial
learning rate of 0.0001, which is reduced by a factor of
0.5 after each iteration. To improve generalization, we apply
data augmentation techniques, including random cropping and
horizontal flipping. Additionally, skeletal joint coordinates are
normalized to the image plane based on the image width and
height. All experiments are conducted on an NVIDIA RTX
3090 GPU.

TABLE III
COMPARISON OF PER (%) FOR STATE-OF-THE-ART METHODS ON THE
FRENCH AND BRITISH ENGLISH CS DATASETS, WITH THE FOLLOWING

NOTATION: HAND (H), MOUTH (M), AND HAND POSITION (P).
Model Feature streams French British

Fully Conv [3] H+M+P - 36.25
TDS-CTC [23] H+M+P+Skel. - 32.58
Student CTC [13] H+M+P - 28.6
CB + VLA [14] H+M - 33.6
3S-BiGRUs [16] H+M+Skel. 20.7 -
3S-BiGRUs+LM [17] H+M+Skel. 25.8 -
Ours Full Frame 11.25 18.41

TABLE IV
COMPARISON OF PER (%) FOR STATE-OF-THE-ART METHODS ON THE

CHINESE CS DATASET UNDER MC AND CI SETTINGS, WITH THE
FOLLOWING NOTATION: HAND (H), MOUTH (M), HAND POSITION (P).

Model Feature streams MC CI

Student CTC [13] H+M+P 68.2 -
CB + VLA [14] H+M 24.5 -
FedCSR [33] H+M+Skel. 14.80 -
Ours Full Frame 6.89 33.14

IV. EXPERIMENTAL RESULTS

We next report our experiments. We measure performance
using the Phoneme Error Rate (PER, %) on the datasets
of Section III. We begin by analyzing the contribution of
individual modalities, followed by an ablation study inves-
tigating the impact of sequence modeling choices, skeletal
feature representations, and auxiliary loss functions. Finally,
we compare our approach against state-of-the-art methods.

To understand the role of each modality, we compare
the RGB-only and skeletal-only models with the fully fused
system. As shown in Table I, the RGB modality outperforms
the skeletal modality across all datasets. However, fusing both
modalities further enhances recognition accuracy, yielding
absolute PER reductions of 1.15% on French, 1.91% on British
English, and 2.38% on Mandarin Chinese, compared to the
RGB-only model. This indicates that while the RGB modality
captures more discriminative features, the skeletal modality
provides complementary information that improves phoneme
recognition.

To evaluate the impact of different components, we conduct
an ablation study (Table II), focusing on sequence modeling
choices and auxiliary loss functions. In particular, we compare
the performance of the combination of TCN with Conformer,
LSTM, and Transformer encoders, as well as their conjunction
with VGG and ResNet18 feature learners to assess their effec-
tiveness in sequence modeling. Results indicate that the Con-
former consistently achieves the lowest PER, demonstrating
its ability to model both short-range articulation patterns and
long-range phoneme dependencies. The LSTM encoder, while
effective in capturing temporal relationships, shows limitations
in handling long sequences, whereas the Transformer struggles
due to its lack of local feature modeling. We also observe
that when the TCN is removed from the pipeline, the PER
increases, confirming that the TCN is essential for capturing
short-range articulation patterns. Additionally, we assess the
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effect of the KL-divergence loss (LV ) on phoneme alignment.
Results show that removing this auxiliary loss leads to a
noticeable increase in PER, validating the effectiveness of our
alignment-driven optimization strategy.

Table III compares our model against state-of-the-art ACSR
approaches on the French and British English CS datasets.
Our model achieves the lowest PER of 11.25% on French
and 18.41% on British English, significantly outperforming
existing methods. Unlike prior approaches that rely on explicit
hand-mouth segmentation and synchronization mechanisms,
our framework directly processes the full upper-body region,
leading to more robust feature representations. We further
evaluate our approach on the Mandarin Chinese CS dataset
under both MC and CI settings (Table IV). Our model achieves
a PER of 6.89% in MC and 33.14% in CI.

V. CONCLUSIONS

In this work, we introduced a Conformer-based multimodal
framework for ACSR that effectively captures both appear-
ance and skeletal articulation, addressing hand-lip asynchrony
without requiring explicit segmentation. By processing whole
upper-body frames, our model leverages a ResNet18 for ap-
pearance modeling and a modulated GCN for skeletal repre-
sentation, both refined through a TCN and Conformer encoder
for robust sequence learning. With the integration of a KL-
divergence auxiliary loss, our method significantly enhances
multimodal feature alignment, improving phoneme sequence
prediction. Extensive evaluations on three benchmark datasets
confirm that our system outperforms all existing approaches,
achieving state-of-the-art performance in ACSR.

REFERENCES

[1] R. O. Cornett, “Cued speech,” American Annals of the Deaf, vol. 112,
no. 1, pp. 3–13, 1967.

[2] G. Gibert, G. Bailly, D. Beautemps, F. Elisei, and R. Brun, “Analysis
and synthesis of the three-dimensional movements of the head, face, and
hand of a speaker using cued speech.” The Journal of the Acoustical
Society of America, vol. 118, no. 2, pp. 1144–1153, 2005.

[3] K. Papadimitriou and G. Potamianos, “A fully convolutional sequence
learning approach for cued speech recognition from videos,” in Proc.
EUSIPCO, 2021, pp. 326–330.

[4] L. Liu, T. Hueber, G. Feng, and D. Beautemps, “Visual recognition of
continuous cued speech using a tandem CNN-HMM approach,” in Proc.
Interspeech, 2018, pp. 2643–2647.

[5] L. Liu, J. Li, G. Feng, and X. Zhang, “Automatic detection of the
temporal segmentation of hand movements in British English cued
speech,” in Proc. Interspeech, 2019, pp. 2285–2289.

[6] L. Liu and G. Feng, “A pilot study on Mandarin Chinese cued speech,”
American Annals of the Deaf, vol. 164, no. 4, pp. 496–518, 2019.

[7] S. Sankar, D. Beautemps, and T. Hueber, “The CSF22 database,” Sep.
2023. [Online]. Available: http://dx.doi.org/10.5281/zenodo.8392607

[8] L. Gao, S. Huang, and L. Liu, “A novel interpretable and generalizable
re-synchronization model for cued speech based on a multi-cuer corpus,”
in Proc. Interspeech, 2023, pp. 3407–3411.

[9] P. Heracleous, D. Beautemps, and N. Hagita, “Continuous phoneme
recognition in cued speech for French,” in Proc. EUSIPCO, 2012, pp.
2090–2093.

[10] P. Heracleous, D. Beautemps, and N. Aboutabit, “Cued speech automatic
recognition in normal-hearing and deaf subjects,” Speech Communica-
tion, vol. 52, no. 6, pp. 504–512, 2010.

[11] L. Liu, G. Feng, and D. Beautemps, “Automatic temporal segmentation
of hand movements for hand positions recognition in French cued
speech,” in Proc. ICASSP, 2018, pp. 3061–3065.

[12] L. Liu, G. Feng, D. Beautemps, and X. Zhang, “A novel resynchroniza-
tion procedure for hand-lips fusion applied to continuous French cued
speech recognition,” in Proc. EUSIPCO, 2019, pp. 1–5.

[13] J. Wang, Z. Tang, X. Li, M. Yu, Q. Fang, and L. Liu, “Cross-modal
knowledge distillation method for automatic cued speech recognition,”
in Proc. Interspeech, 2021, pp. 2986–2990.

[14] L. Liu and L. Liu, “Cross-modal mutual learning for cued speech
recognition,” in Proc. ICASSP, 2023, pp. 1–5.

[15] L. Liu, L. Liu, and H. Li, “Computation and parameter efficient multi-
modal fusion transformer for cued speech recognition,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 32, pp.
1559–1572, 2024.

[16] S. Sankar, D. Beautemps, and T. Hueber, “Multistream neural archi-
tectures for cued speech recognition using a pre-trained visual feature
extractor and constrained CTC decoding,” in Proc. ICASSP, 2022, pp.
8477–8481.

[17] S. Sankar, D. Beautemps, F. Elisei, O. Perrotin, and T. Hueber, “In-
vestigating the dynamics of hand and lips in French cued speech using
attention mechanisms and CTC-based decoding,” in Proc. Interspeech,
2023, pp. 4978–4982.

[18] S. Sankar, “Automatic recognition and generation of French Cued
Speech using deep learning,” Ph.D. Thesis, Université Grenoble Alpes,
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