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Abstract—High-quality element distribution maps enable pre-
cise analysis of Old Master paintings. These maps are typically
produced by Macro X-ray Fluorescence (MA-XRF) scanning, a
non-invasive technique for elemental imaging of flat surfaces.
However, MA-XRF faces a trade-off between resolution and
acquisition time, making high-resolution (HR) scans impractical
for large artworks. Super-resolution MA-XRF mitigates this by
enhancing scan quality while reducing acquisition time. This
paper introduces a deep learning framework for MA-XRF
super-resolution that removes the need for paired HR MA-
XRF training data by leveraging RGB images to model cross-
modal dependencies. Our approach is specifically tailored for
MA-XRF, an important feature as RGB and MA-XRF data
lack a common spectral domain. We introduce self-supervised
adversarial training, where the discriminator learns from patches
across modalities, guiding the generator toward realistic MA-
XRF reconstructions. Additionally, our method enforces physical
consistency via network design and enhances training through
pseudo-real data augmentation. Experiments on Old Master
paintings show our method outperforms state-of-the-art MA-
XRF super-resolution techniques, demonstrating the need for
tailored solutions as existing approaches from other domains do
not generalize effectively to this task.

Index Terms—X-ray fluorescence, MA-XRF super-resolution,
adversarial, self-supervised learning, deep unfolding

I. INTRODUCTION

Macro X-ray fluorescence (MA-XRF) is widely used to
analyze the material composition and artistic techniques of
Old Master paintings, offering detailed maps of elemental
distributions across paint layers. MA-XRF works by measur-
ing secondary X-ray photons emitted from chemical elements
when excited by a primary X-ray beam [1]-[3]. While highly
effective, MA-XRF imaging is constrained by a trade-off
between resolution and acquisition time: high-resolution (HR)
scans require prolonged exposure, making them impractical
for large paintings. MA-XRF super-resolution (SR) techniques
address this limitation by reconstructing HR element maps
from low-resolution (LR) acquisitions, reducing scan times
while preserving fine details [4], [5]. Early work on MA-
XRF SR relied on model-based techniques, such as dictionary
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learning, to integrate HR RGB information with LR MA-
XRF images [4]. Similar strategies have been explored in
hyperspectral and multispectral imaging, where sparse repre-
sentation, matrix factorization, and tensor-based methods have
been widely used [6]-[8]. More recently, coupled dictionary
learning was proposed in [5] to explicitly distinguish shared
and unique information across modalities, preventing artifacts.

Deep learning has significantly advanced SR in spectral
imaging domains such as Multispectral Imaging (MSI) [9],
[10], Hyperspectral imaging (HSI) [11]-[13], and RGB guided
depth map SR (GDSR) [14], [15]. However, applying these
methods to MA-XREF is challenging due to two key factors:
(i) spectral mismatch—unlike HSI and MSI, RGB and MA-
XRF data do not share a common spectral domain, resulting
in the lack of a linear mapping; (ii) severe data scarcity—HR
MA-XREF datasets are rare due to cultural heritage constraints,
limiting training. To address these challenges, we propose
a tailored deep learning framework for MA-XRF SR that
effectively integrates RGB guidance. The key contributions
of this work include:

« Self-supervised multi-modal learning: Leverages struc-
tural information from a single HR RGB image.

o Pseudo-real data augmentation: Fuses HR RGB and
LR MA-XRF images to mitigate training data limitations.

o Misclassification-Focused Adversarial Loss: Targets
misclassified patches to enhance training efficiency.

o Model-inspired architecture: Incorporates domain
knowledge into the network design.

II. PROBLEM FORMULATION

This problem requires reconstructing a HR MA-XRF im-
age (an element distribution map) by leveraging information
from both MA-XRF and RGB modalities. Specifically, the
reconstruction process involves synthesizing an HR MA-XRF
image, Y € RB*M from a given LR MA-XRF image,
Y¢ € REBEXM_ and an HR RGB image, 7 € RbxMh, Here,
B represents the number of spectral channels in the MA-XRF
data, and Ny and V) denote the total pixels in the HR and LR
images, respectively.
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Fig. 1: Overview of the method. Part (a) shows the reconstruc-
tion network, while part (b) presents the discriminator and
pseudo-real data augmentation. The adversarial framework is
shown in part (c).

To facilitate reconstruction, a dictionary-based represen-
tation is commonly used to capture both the shared and
unique features of MA-XRF and RGB images [5], [16]-[18].
Following the multimodal SR framework in [5], the HR MA-
XRF and RGB images are represented by a set of dictionaries:

Y =Y. +Y,=DA, + DA, |

Z -7 4% -DPA, + DAY, M
where Y and Z denote the HR MA-XRF and RGB images, re-
spectively. Here, the subscript ¢ indicates the common (shared)
components, while u denotes the unique components. The
dictionaries DXT € REXMe and DX € RE*Meu (for MA-
XRF) and D € R¥*Me and D € R¥*Mre (for RGB) con-
tain M., M,,, and M,, dictionary components, respectively.
The representation matrices are given by A, € RMexNn
AT ¢ RMeuxNn and A® € RMroXNn with A, shared
across both modalities.

Furthermore, it is assumed that the LR MA-XRF image,
Y 1» 18 acquired from the HR MA-XRF image, Y, through
downsampling:

Y, =YU. )

The goal is to reconstruct Y given Equations (1) and (2), along
with the~ available LR MA-XRF image, Y|, and HR RGB

image, Z. Note that we can also consolidate Equations (1)
into a compact form:

X =DA, 3)
where
. - - A
- Y pDxf  pxf 0 - e
X=|5 = | s v A= |A"| . 4
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III. PROPOSED METHOD

We propose a model-inspired deep learning framework in
which a deep neural network (DNN) learns a representation
A for the MA-XRF and RGB data in a data-driven manner.
Traditional sparse representation methods aim to solve:

argmin|[DA — X||2 + M\|A|l;, st A>0. (5
A

where the inequality is applied element-wise, and the norms
are entry-wise. Note that although matrices here are denoted
without tildes to distinguish the model from the data-driven ap-
proach, they share the same dimensions as those in the problem
formulation. A common approach to solving such problems is
the Iterative Shrinkage-Thresholding Algorithm (ISTA) [22].
Moreover, the Learned ISTA (LISTA) framework [23] unfolds
ISTA iterations into a deep network, where each layer learns
to approximate an ISTA update step:

A®+D) — ReLU (A(’“) ~WA® £ 8X - /\) .6

where W, S, and A are optimized during training. The matri-
ces W and S are not part of Equation (5) but are introduced as
learnable parameters to mimic the structure of ISTA. However,
we do not aim to directly solve the sparse representation
problem in Equation (5). Instead, we are motivated by the
LISTA framework and introduce modifications to better align
with MA-XRF reconstruction. To meet the sparsity, non-
negativity, and boundedness constraints of A [4], we propose
a Sigmoid activation with a bias term, as follows:

AF+D — Sjomoid (A<k> ~WHRA® L ghx /\(k)) ,
(7

where W) S(*) and A(*) are learnable parameters for each
unfolded iteration k. In our model, A®) is not a scalar but a
vector, where each component )\Ek) corresponds to a specific
row of A%), Thus, each )\Ek) is applied element-wise to each
row ¢, before the Sigmoid function. Furthermore, note that Y,
being the desired final output, is not accessible. Hence, we set
X = [Y+,Z]7 as the input of the network, where Y 1 is the
bilinear upscaled version of Y.

Finally, after K unfolded iterations of the network, the MA-
XRF image is obtained via a final synthesis layer that leverages
Equation (3) as follows:

X = Sigmoid(DAF) — \(5)), (8)

where X is the concatenated reconstruction. To ensure a
bounded non-negative output, we include a last non-linearity
with a Sigmoid layer and a bias term M%), To extract the
reconstructed HR MA-XRF image Y and HR RGB image Z
from X, specific channels are selected via slicing:

Y = X[O:B]v Z= X[B:B+b]- 9

Here, X[(): B] selects the first B channels, forming HR MA-
XRF, while X[B: B+b) extracts the next b channels, corre-
sponding to HR RGB. The end-to-end network g(+; #), where
0 represents the learnable parameters, is shown in Figure 1
(a). Each matrix multiplication in Equations (7) and (8) is
implemented with 1x1 convolutional layers.
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TABLE I: Comparative results for 4 x upscaling on Old Master paintings. Best results are in bold, second-best are underlined.

Methods for SR problems

Dataset Metric SISR GDSR HSI SR MA-XRF SR
CAR [19] HAT [20] Swin2SR [21] | MMSR [14] SSGNet [15] | CSTF[6] CMS [7] LITR [I3] CS2DIPs [12] | SSR [4] SSRCU [5]  Ours
Flowers RMSE 0.0380 0.0275 0.0275 0.0231 0.0242 0.1336 0.0412 0.0582 0.0187 0.0232 0.0187 0.0136
and Insects | PSNR 28.42 31.22 31.22 3272 3234 17.48 27.70 24.71 34.56 32.69 34.55 37.31
The Virgin RMSE 0.0281 0.0226 0.0229 0.0240 0.0247 0.0771 0.0397 0.0657 0.0211 0.0223 0.0182 0.0161
of the Rocks | PSNR 31.01 32.92 32.79 3241 32.14 22.26 28.03 23.65 33.52 33.03 34.80 35.84
Dona Isabel | RMSE 0.0388 0.0296 0.0297 0.0252 0.0264 0.0777 0.0373 0.0513 0.0247 0.0264 0.0252 0.0207
de Porcel PSNR 28.22 30.57 30.54 31.97 31.55 22.19 28.56 25.80 32.16 31.55 31.98 33.66

(a) GT HR Ca K, map (c) CAR [19] (d) HAT [20]

(b) HR RGB

i) CMS [7]

(j) LTTR [13]

(¢) Swin2SR [21]

(k) CS2Dips [12]

(f) MMSR [14]  (g) SSGNet [15] (h) CSTF [6]

(1) SSR [4] (m) SSRCU [5] (n) Ours

Fig. 2: Visual comparison of HR MA-XRF data (Ca K element distribution maps), reconstructed using various SR methods
for a 4x upscaling. Parts (a) and (b) show the ground truth HR Ca K, map and the HR RGB image of Flowers and Insects
©KMSKA, respectively. Parts (c) to (n) illustrate the reconstructed maps and their corresponding error maps, each compared

to the ground truth.

A. Training Strategy

Our method is fully self-supervised and does not require a
separate training dataset. Instead, it learns directly from input
data, consisting of an HR RGB image, LR MA-XRF image,
and the known downsampling matrix. To use this information
effectively, we introduce a step that projects the network
output, Y, onto the convex set of solutions for Y such that
Y, = YU. Specifically, we use the following equation [24]:

Proj(Y) =Y — (YU - Y,)UT. (10)

This approach ensures that the final reconstruction always
matches the downsampled version of the given LR MA-XRF
image Y. As shown in Figure 1 (a), the output of our
reconstruction method is Proj(Y). Furthermore, to guide the
training, we employ a loss function that integrates both fidelity
to the observed data and regularization, as follows:

La(Y [, Y)) +01Lea(Z,Z) + 0z Laan(Proj(g(X))), (11)

where Y| is the given LR image, Y 1 is the downsampled
network reconstruction (without the projection step), Z is the
HR RGB image, and 7 is the reconstructed HR RGB image.
Here, X represents the concatenated input, as in Equation (7).
The weight for each loss component is controlled by the
scalars « and as. We adopt Mean Squared Error (MSE)
for both L.1(-) and L.o(:). The adversarial loss Lgqgy(+)
encourages realistic HR MA-XRF images and is computed
via the discriminator d(-) in Figure 1 (b), which processes
single-channel MA-XRF patches.

1) Misclassification-Focused Adversarial Training: We ex-
tend least squares generative adversarial networks (LSGANSs)
loss [25] by restricting the training objective to only patches
misclassified by the discriminator, focusing updates on the
most challenging examples. A discriminator is typically
trained to output 1 for real images and -1 for fakes; however,
outputs beyond these thresholds are acceptable. For instance, a
real sample with an output above 1 or a fake sample below -1
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is not problematic. Thus, updates in our approach are driven
exclusively by misclassified samples.

Formally, let d,(y) denote the discriminator output for a
single-channel MA-XRF patch y (with parameters ¢), and let
7 be a threshold. A patch y is misclassified if

(r>0and dy(y) <7) or (r<0anddy(y)>rT).

We set 7 € {+1,—1}. Let P7 be the distribution of real mis-
classified patches under threshold 7, and IPj the corresponding
distribution for generated patches. The generator loss is then:

Laay = Eypy [(dqs(y) - 1)2}7

where correctly classified generated patches (dy(y) > 1) are
discarded. The discriminator is trained analogously:

Lp=E, p- [(dqb(y) + 1)2] +Eyp [(d¢(y) - 1)2}, (13)

where P, ! and P! are the sets of generated and real misclassi-
fied patches, respectively. In practice, this is implemented by
sampling a batch and discarding correctly classified patches
before computing the batch mean.

2) Pseudo-real data augmentation: We exploit spatial sim-
ilarities between MA-XRF and RGB images to avoid the need
for real patches in training. Specifically, we form pseudo-real
patches by computing a weighted average between a randomly
selected channel of the interpolated MA-XRF image and the
most correlated channel of the RGB image:

5Y¢Tpatch + (1 - ﬁ) Zpatch7

where Y | tpach 18 a single-channel patch from the interpolated
MA-XRF data and Zp,ch is a patch from the RGB channel that
shows the highest correlation with that MA-XRF channel. See
Figure 1 (b) and (c).

(12)

(14)

IV. EXPERIMENTS AND RESULTS
A. Implementation details

To evaluate the effectiveness of our method, we conducted
tests on datasets derived from three renowned oil paintings.
These include Jan Davidsz. de Heem’s Flowers and Insects (oil
on canvas, Royal Museum of Fine Arts Antwerp, inv. no. 54)
[26]; Francisco de Goya’s Doiia Isabel de Porcel (before 1805,
oil on canvas, The National Gallery, London, NG1473) [27];
and Leonardo da Vinci’s The Virgin of the Rocks (circa 1491/2-
1508, oil on poplar, thinned and cradled, The National Gallery,
London, NG1093) [1]. Our approach was benchmarked against
several methods including SSR [4] and SSRCU [5] specifically
designed for MA-XRF SR; CSTF [6], CMS [7], LTTR [13],
CS2DIPs [12], targeting HSI SR; MMSR [14] and SSGNet
[15] for RGB guided depth map SR; and CAR [19], HAT
[20], Swin2SR [21] for single image SR (SISR). We used
deconvoluted MA-XRF element maps [28] as HR ground truth,
with LR versions produced by 4x downsampling.

Next, we detail the configurations used in our experiments.
The MA-XRF image has B = 21, B =7, and B = 9 spectral
channels for Flowers and Insects, Dofia Isabel de Porcel, and
The Virgin of the Rocks, respectively. All RGB images are

TABLE II: Ablation: Loss Terms

Le1 Le2 Lgqy PSNR (dB) T RMSE |

v v v 37.31 0.0136
v v 37.31 0.0136
v 36.97 0.0142
v v 36.97 0.0142

v v 31.85 0.0256

TABLE III: Ablation: Network Components

Configuration PSNR (dB) + RMSE |
Full Model 37.31 0.0136
Standard LSGAN Loss 36.98 0.0142
No Sigmoid/Bias in D (Linear Synthesis Layer) 36.75 0.0145
No Projection Module 36.34 0.0152
Use Leaky ReLU (All Sigmoids Removed) 35.97 0.0159

512 x 512 x 3 (b = 3). The number of channels M in each
layer of our DNN is set to 64, and the number of layers K is
set to 5. See Figure 1 (a). The initial training phase excludes
the adversarial loss component specified in Equation (11). We
initialize network weights using Xavier uniform initialization,
and then pretrain for 1 x 10° epochs with the Adam optimizer,
setting a3 = 0.003 during this phase.

In the adversarial training stage, we maintain the weight
parameter «; and introduce aq, set at 0.5 x 1076, As shown
in Table II, a;; has minimal impact, while ay was empirically
set to ensure stable training when coupling with L,q,. The
adversarial training uses a patch size and batch size of 32, with
learning rates of 3 x 10~* for the generator g(-) and 3 x 1076
for the discriminator d(-), spanning 5 x 10° epochs. The scalar
£ in Equation (14) is randomly adjusted from O to 0.9 in
each iteration, aiding data augmentation. We also implement
random flipping of patches to further diversify the adversarial
training. During this phase, the network architecture and data
are as described in the previous section. Finally, the discrim-
inator architecture follows the design shown in Figure 1 (b).

B. Results

The proposed approach shows superior performance across
all evaluated datasets, notably outperforming state-of-the-art
MA-XRF-specific techniques such as SSRCU [5]. Among the
SISR methods, HAT [20] stands out; however, these techniques
still fall short of addressing the specific challenges of MA-
XRF SR. GDSR methods, MMSR [14] and SSGNet [15],
further improve results but do not achieve the best perfor-
mance. In the HST SR group, CS2DIPs [12] secures second-
best performance on several datasets, though overall SSRCU
remains the second-best since it is designed for MA-XRF SR.
Notably, our approach consistently achieves the best results in
terms of both RMSE and PSNR, highlighting the importance
of employing methods specifically tailored to the unique
spectral ranges and physical properties of MA-XRF imaging.
Further insights into these performance improvements are
provided in Fig. 2, which displays the calcium (Ca K,)
element distribution maps alongside their corresponding error
maps. Our method recovers finer details and sharper edges,
resulting in higher-quality MA-XRF reconstructions.
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C. Ablation Study

In this section, we perform ablation studies on the Flowers
and Insects dataset. Table II evaluates different combinations
of the three loss terms, L.1,Lc2, Lqqy, While keeping the
scalar weights a1 and s, the same as in Section IV-A. We
observe that combining L£.; and L4, achieves the highest
PSNR (37.31dB) and the lowest RMSE (0.0136), while in-
cluding Lo does not alter these metrics for this experiment.
This suggests that L.o could be omitted in scenarios where
the learned representation is not required to reconstruct both
RGB and MA-XRF images. Nevertheless, removing either £.;
or Laq, degrades performance, showing that these two terms
are key to achieving the best reconstruction results.

Table III examines the impact of removing or modifying
various components in our approach. Each modification is
tested in isolation. Specifically, we tested: (1) replacing our
focused adversarial loss with a standard LSGAN objective, (2)
removing the sigmoid and bias after D (making the synthesis
layer linear), (3) eliminating the projection module, and (4)
substituting all sigmoid activations with leaky ReLU. In each
case, we observed a drop in performance (lower PSNR and
higher RMSE). The complete configuration delivers the best
results, underscoring the importance of each component.

V. CONCLUSION

This paper introduces the first deep learning approach
tailored to MA-XRF SR, specifically designed for Old Master
paintings. Our approach requires only a single HR RGB image
and LR MA-XRF data for training, assuming a known down-
sampling model, removing dependency on extensive datasets
or pre-trained architectures. Both qualitative assessments of
image quality and quantitative evaluations using PSNR and
RMSE confirm that our method surpasses state-of-the-art tech-
niques. Its efficiency, outlined by minimal data requirements,
enables broader application in Old Master painting analysis,
including Macro X-ray Powder Diffraction and Macro Fourier
Transform Infrared Scanning in reflection mode.
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