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Abstract—In this paper, we propose a rate control method
based on the Octree coding of Geometry-based Point Cloud
Compression (G-PCC) for LiDAR point clouds. In conventional
methods, the parameter estimation for the Rate-Quantization (R-
Q) model relies only on frame-internal characteristics. While
this approach facilitates the identification of general trends in
the encoding efficiency of LiDAR point clouds and provides an
approximation of the relationship between bitrate and quanti-
zation scale, accurate estimation of the R-Q model parameters
for each frame remains a challenge. To address this issue, our
method updates the R-Q model using temporal correlations
among frames, specifically by employing adaptive Least Mean
Square (LMS) with our dynamic control of its step size and
adaptive bit allocation for geometry and attribute information.
Experimental results demonstrate an improvement of 99.7% in
error rate compared to conventional methods.

Index Terms—point cloud, compression, G-PCC, rate control.

I. INTRODUCTION

3D point clouds are spatial data utilized in various fields,
such as construction, autonomous driving, and extended re-
ality, and the demand for real-time delivery of the data is
growing [1]. A key method for achieving real-time delivery of
3D point clouds is LiDAR scanning, which enables the real-
time capture of sparse 3D point clouds (hereinafter referred to
as LiDAR point clouds). On the other hand, real-time delivery
of LiDAR point clouds presents the challenge of large data
sizes which typically require a bandwidth of several to tens of
Mbits per second, making compression of LiDAR point clouds
essential.

Recent approaches for compressing 3D point clouds include
deep learning-based techniques [2] [3] [4], which exhibit
advanced compression performance. However, these methods
require substantial GPU computing power and are time-
consuming, making them unsuitable for real-time transmis-
sion on portable devices. Alternatively, Geometry-based Point
Cloud Compression (G-PCC) [5] is a lightweight coding
method standardized by the Moving Picture Experts Group
(MPEG), known for its international standards for video and
audio data encoding. This method is suitable for real-time
processing because of its low computational complexity. G-
PCC enables lossy compression by quantization parameters for
both geometry and attribute information. However, in practice,
the encoding efficiency and the number of points in LiDAR
point clouds can vary depending on the scene, even with
the same sensor, leading to fluctuations in bitrate. Currently,
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the ability to achieve a desired bitrate is absent in reference
software [6]. Moreover, in practical use cases, the network
bandwidth may not always be constant. Therefore, to reliably
deliver LiDAR point clouds, rate control methods capable of
achieving the desired bitrate are necessary.

The G-PCC reference software [6] provides tools for encod-
ing geometry, such as Octree and Predictive tree, which can
be selected by the encoder [7]. Predictive tree is particularly
suitable for 3D point clouds obtained from spinning LiDAR, as
it utilizes the geometric features of laser scans from spinning
LiDAR. On the other hand, Octree is independent of the
scanning methods of LiDARs, allowing it to be widely utilized
without restricting the type of LiDAR. This paper focuses on
the generic applicability of the Octree.

Li et al. [8] proposed a rate control method using the
Octree for G-PCC applied to LiDAR point clouds. They
created a Rate-Quantization (R-Q) model that describes the
relationship between bitrate and quantization parameters and
proposed a procedure to update the model parameters using
frame-internal predictions for each frame. Specifically, they
estimate the parameters using the density of the point cloud
for each frame. However, considering the signal characteristics
of LiDAR point clouds, where their distribution changes with
each frame, parameter estimation based solely on one frame-
internal feature, density, is insufficient. Furthermore, in the
Li et al.’s method, bit allocation for geometry and attribute is
fixed throughout the sequence, which also makes accurate rate
control difficult.

To address this issue, we focus on the fact that the bitrate
fluctuates continuously and propose a method that updates
the R-Q model using temporal correlations. Specifically, we
utilize the adaptive Least Mean Square (LMS) [9] within the
G-PCC rate control framework, updating model parameters
for each frame based on information from the previous frame.
Furthermore, based on our observation that the appropriate
update step size for the LMS can differ from frame to frame,
our method dynamically controls the step size. After that,
the updated R-Q model is used to perform bit allocation
for the next frame, assigning bits for geometry and attribute.
These characteristics of our method realize the accurate rate
control. The contributions of our research are as follows: 1) We
propose an accurate rate control method that updates the R-Q
model using temporal correlations, specifically by employing
LMS and dynamically controlling its update step size. 2) We
propose a method for appropriate bit allocation using the R-Q
model updated for each frame.
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Fig. 1. Overview diagram of the proposed method.

II. RELATED WORK

A. G-PCC

MPEG has standardized two main methods based on use
cases: Video-based Point Cloud Compression (V-PCC) [10]
and G-PCC [5]. V-PCC is particularly suited for encoding
dense and dynamic point cloud data, such as that of peo-
ple. In contrast, G-PCC is a technique that compresses 3D
point clouds while retaining their 3D data structure, making
it applicable to sparse point clouds obtained from LiDAR.
G-PCC encodes geometry and attribute separately. One of
the tools for compressing geometry is the Octree, which
recursively subdivides the entire target space into an octree
structure, enabling high-efficiency point cloud compression
through arithmetic coding that uses the occupancy state of
neighboring spaces as context. Additionally, several tools are
available for attribute compression [7].

In G-PCC’s lossy compression, the quantization parameters
QG and QA control the quantization of geometry and attribute,
respectively. The coordinates of 3D point clouds are trans-
formed and duplicate points are merged before being encoded,
based on QG. After encoding the geometry, attribute values
are reattached to the reconstructed point cloud, followed by a
transformation governed by QA [8]. Therefore, the bitrate of
attribute is influenced by the quantization of the geometry.

B. Rate Control for Point Cloud Compression

Rate control is a technique that achieves a desired bitrate
by adjusting factors that affect the bitrate, such as quanti-
zation parameters. Generally, in rate control for point cloud
compression, the first step is to allocate bits to geometry
and attribute while minimizing overall distortion to ensure
that the target bitrate is not exceeded. Subsequently, the
quantization parameters are derived from the rate model to
achieve the allocated rate. In recent years, several rate control
methods for point cloud compression have been proposed.
Various rate-distortion models for optimal bit allocation have
been introduced [11] [12] [13]. These methods are specific
to rate control in V-PCC. Wang et al. [14] proposed a rate
control method under the point cloud compression standard
developed by the Audio Video Coding Standard Workgroup
of China [15]. Furthermore, Zhang et al. [16] proposed a rate
control for dense and dynamic human point clouds in G-PCC,
which cannot be directly applied to rate control using LiDAR
sensors targeted in this paper due to differences in the content
and characteristics of the point cloud data.

For the rate control based on the G-PCC for LiDAR point
clouds, several approaches have also been proposed. Hou et

al. [17] proposed a rate control method using Predictive tree,
specifically targeting spinning LiDAR. This method utilizes
parameters specific to spinning LiDAR, limiting the types
of LiDAR that can be employed. Li et al. [8] proposed a
rate control method for LiDAR point clouds using Octree.
This approach constructs an R-Q model and allocates bitrates
to both geometry and attributes, adjusting the R-Q model
parameters for each frame through frame-internal estimation
to achieve the desired target bitrate.

This paper focuses on the generic applicability of Octree,
building upon the method proposed by Li et al. [8]. Nonethe-
less, a challenge with Li et al.’s method is that it estimates
model parameters using only frame-internal features, making
it difficult to estimate an accurate R-Q model for each frame.

III. PROPOSED METHOD

A. Overview

The overview of the proposed method is illustrated in Fig. 1.
Initially, the target bitrate Rtar to be allocated for the current
frame is determined based on the average target bitrate Rave.
Here, the average target bitrate Rave can be expressed as
Rave = RT /N , using the full frame level total target bitrate
RT and the number of frames N . The target bitrate Rtar for
the current frame is allocated using the following model, in
accordance with the method proposed by Li et al. [8]:

Rtar = Rave +
(RL

T −Rave ·NL)

SW
, (1)

where RL
T denotes the bitrate that can be allocated to the

remaining frames, NL is the number of remaining frames,
and SW refers to the sliding window.

Once Rtar is determined, the quantization parameters for
geometry and attribute, QG and QA, for the current frame are
derived from the point cloud and the R-Q model. Then, bitrates
for geometry RG and attribute RA are allocated accordingly.
The R-Q model parameters start with initial values for the
first frame and are then updated for subsequent frames after
the second. After determining QG and QA, encoding of the
point cloud is performed using G-PCC.

Finally, the actual bitrate Ract obtained from the encoding
results and the computed bitrate Rcomp are used to update the
R-Q model for the next frame. The computed bitrate Rcomp

can be calculated based on QG used in the encoding and (5).
For the subsequent frame, the bit allocation process is repeated
based on the updated R-Q model.

In this process, our proposal comprises the following two
points, each of which can be referenced in Fig. 1. Proposal (i):
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To accurately estimate the parameters of the R-Q model for
each frame, we propose a method that updates the R-Q model
using temporal correlations, specifically by employing LMS
and dynamically controlling its update step size. Proposal (ii):
For optimal bit allocation for each frame, we propose a bit
allocation method based on the R-Q model updated for each
frame. The following sections provide a detailed description
of each proposal.

B. R-Q Model Update using Temporal Correlation

The R-Q model proposed by Li et al. [8] is expressed as
follows:

RG = αG lnQG + βG, (2)

RA = αA(QG)Q
βA

A , (3)
αA(QG) = a lnQG + b, (4)

RT = αG lnQG + βG + (a lnQG + b)(cQd
G)

βA , (5)

where QG and QA are the quantization parameters for ge-
ometry and attribute, αG and βG are parameters for the R-Q
model of geometry, while αA and βA are parameters for the
R-Q model of attribute. As mentioned earlier, since RA is
influenced by QG, αA becomes a function of QG as shown in
(4). βA, however, does not depend on QG and therefore is not
a function of QG. a and b describe the relationship between
αA and QG, and RT represents the total bitrate comprising
both RG and RA. Additionally, following the approach of Li
et al. [8], we define QA based on G-PCC CTC [18] as:

QA = cQd
G, (6)

where c and d are the parameter of the relationship between
QG and QA. The updates for αG, βG, a, and b using LMS [9]
are carried out as follows:

αGi+1
= αGi

+ δαG
(Ract −Rcomp) lnQG, (7)

βGi+1
= βGi

+ δβG
(Ract −Rcomp), (8)

ai+1 = ai + δa(Ract −Rcomp)(cQ
d
G)

βA lnQG, (9)

bi+1 = bi + δb(Ract −Rcomp)(cQ
d
G)

βA , (10)

where αGi , βGi , ai, and bi are the R-Q model parameters for
the i-th frame. δαG

, δβG
, δa, and δb represent the step sizes

for each parameter in the LMS. Notably, the parameter βA has
been found, from our preliminary validation, to exhibit little
variation between frames; therefore, it is not updated.

Additionally, the optimal step size may vary between
frames. 3D Point clouds obtained while moving, such as
those from vehicle-mounted LiDAR, often capture rapidly
changing environments, leading to significant variations in
spatial distribution. This variability can cause fluctuations in
encoding efficiency within Octree, resulting in changes to the
R-Q model. When the R-Q model changes significantly, rate
control errors may increase. Therefore, increasing the LMS
update step size allows for better tracking of the previous
frame’s R-Q model, improving accuracy. Conversely, when
spatial distribution changes are minimal, a large step size
can lead to unnecessary parameter updates and reduced rate

control precision. Thus, a uniform step size for LMS updates
is inadequate; it should be adjusted for each individual frame.

To address this, we propose a method that enhances accu-
racy and enables stable rate control through Dynamic Step size
Control (DSC). The step size is updated for each frame based
on the following equation:

δX =


θδbaseX if θ < |Ecur|

Ēi
,

|Ecur|
Ēi

δbaseX if 1
θ < |Ecur|

Ēi
< θ,

1
θ δ

base
X if |Ecur|

Ēi
< 1

θ ,

(11)

where δX denotes the step size of the parameter X , which can
be any of the following parameters: αG, βG, a, or b. δbaseX

represents the base value of δX . θ is the threshold of the step
size. θ serves as the maximum threshold for the step size,
whereas the minimum threshold for the step size is defined
as 1/θ. Ecur is the difference between the actual bitrate Ract

obtained from encoding and the computed bitrate Rcomp, and
Ēi denotes the cumulative average of the absolute values of
the difference up to the i-th frame.

However, if the step size is determined solely by the
magnitude of the rate error as described above, the following
issue may arise: if the R-Q model is updated excessively, it
is possible that a significant error will still be detected in the
subsequent frame, which could lead to setting a large step size.
If this occurs continuously, the rate may fluctuate around the
target bitrate without stabilizing. To prevent this, we propose
that the step size should also be reduced if unstable behavior
around the target bitrate is detected based on the following
condition:

δX =
1

θ
δbaseX if Ecur · Epre < 0, (12)

where Epre is the difference between the actual bitrate and
the computed bitrate from the previous frame. The step size
control based on (11) is performed only when the condition
in (12) is not met.

C. Adaptive Bit Allocation

As discussed in Section III-A, the appropriate R-Q model
varies for each frame. On the other hand, Li et al. [8] allocate
bits for geometry and attribute using pre-fitted R-Q model
parameters, resulting in a uniform allocation across all frames.
In other words, their method does not reflect the R-Q model
updates in each frame. Even with accurate estimation of the
R-Q model for each frame, poor accuracy in bit allocation
for geometry and attribute can hinder effective rate control.
We propose Adaptive Bit Allocation (ABA), which achieves
optimal bit allocation by utilizing the parameters from the
frequently updated R-Q model. The total bitrate for the i-th
frame to be expressed as:

Rtari

Mi
= αGi

lnQG + βGi
+ (ai lnQG + bi)(cQ

d
G)

βA . (13)

where Rtari denotes the target bitrate for the i-th frame, Mi is
the number of points in the i-th input point cloud. From both
(13) and (2), QG for the i-th frame can be determined, and
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Fig. 2. Four examples of bitrate per frame.

TABLE I
EXPERIMENTAL RESULTS FOR THE ERROR RATE.

G-PCC anchor Li et al. [8] Prop.1 Prop.2 Prop.3
CBR 8.20% 3.71% 2.89% 2.78% 1.08%
ABR - 2.86% 2.04% 2.04% 0.01%

QA can be derived from (6). Hence, by utilizing the regularly
updated R-Q models, we can achieve optimal bit allocation.

IV. EXPERIMENTS

A. Experimental Settings

We implemented the proposed method on the latest software
compliant with G-PCC version 1, specifically G-PCC TMC13-
v12.10 [6]. We evaluated three patterns of the proposed
method: LMS only (Prop.1), LMS and DSC (Prop.2), LMS,
DSC, and ABA (Prop.3). We also performed reference exper-
iments with G-PCC anchor (v12.10) and Li et al. [8]. The
method of Li et al. was implemented and run on version
12.10. We utilized Octree and RAHT, conducting experiments
under lossy conditions. The experimental data comprised the
G-PCC’s am-frame spinning class of LiDAR sequences, con-
sistent with [8]. The average target bitrate Rave was obtained
from the experimental results of G-PCC anchor across rate
points r01 to r06, in accordance with G-PCC CTC. The initial
parameters of the R-Q model, as represented in (2) – (4), were
retrieved using the results obtained earlier, following the same
methodology as [8].

The evaluation metrics include the error rate of rate control,
Bjontegaard delta rate (BD rate), and encoding time. For
evaluating the error rate of rate control, we tested two methods:
Constant Bit Rate (CBR) and Average Bit Rate (ABR) [19].

Furthermore, the parameters for the current validation
were set as follows: the initial step sizes in LMS were
(δbaseαG

, δbaseβG
, δbasea , δbaseb ) = (0.05, 0.5, 0.5, 0.5). The thresh-

old θ for the step size in DSC was set to 1.5, and SW
in (1) was set to 4. The specification of the PC used for
the experiments was a 12th Gen Intel® Core™ i9-12900K
CPU@3.20 GHz.

B. Experimental Results for the Error Rate

The experimental results for the error rate of rate control
are shown in Table I. As previously mentioned, the average
target bitrate Rave was obtained by executing G-PCC anchor;
thus, the ABR evaluation for G-PCC anchor is excluded.
Prop.3 achieved the best accuracy with the CBR error rate of
1.08%. Additionally, for the ABR, Prop.3 attained the lowest
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Fig. 3. RD curve of ford 01 q1mm.

error rate of 0.01%, representing an improvement of 99.7%
compared to the method of Li et al. The error rate shows
a tendency for improvement compared to the literature in
[8], which is believed to be due to the upgrade of the G-
PCC version. Prop.2 showed a 3.8% improvement in the CBR
error rate compared to Prop.1, highlighting the effectiveness
of DSC. The absence of improvement in ABA is likely due
to ABR calculating the error rate based on the total sum of
errors across all frames, which does not capture the subtle
improvements observed in CBR. Moreover, Prop.3 showed a
61.2% improvement in the CBR error rate compared to Prop.2,
indicating the effectiveness of ABA.

Table II compares the CBR error rates for various sequences
and rate points between the method of Li et al. and Prop.3.
Across all rate points and sequences, Prop.3 exhibits outstand-
ing performance.

Figure 2 shows the rate transitions for the ford 01 q1mm
and qnxadas-motorway-join sequences. It can be observed that
the proposed method maintains stable control in both low-rate
(r01) and high-rate (r06) bands.

C. Experimental Results for the BD Rate

Table III presents the results of BD rate and the ratio of Enc
time for each method compared to the G-PCC anchor. The
proposed method demonstrates gains of -0.8% for Geometry
and -3.0% to -3.2% for Attribute. Figure 3 shows the RD curve
of ford 01 q1mm. Additionally, the encoding time was found
to be nearly equivalent to that of G-PCC anchor.

Table IV compares the BD rates of each point cloud between
G-PCC anchor and Prop.3. This demonstrates the effectiveness
of the proposed method across various datasets. Although the
results of Li et al. show some deviation from the literature
in [8], it is believed to be due to the impact of updating
the G-PCC version, as mentioned earlier. Additionally, as
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TABLE II
COMPARISON OF CBR ERROR RATE BETWEEN LI ET AL. AND THE PROP.3.

Point Cloud Li et al. [8] Prop.3
r01 r02 r03 r04 r05 r06 r01 r02 r03 r04 r05 r06

ford 01 q1mm 5.5% 2.8% 5.8% 4.0% 0.9% 3.3% 1.2% 0.9% 0.7% 0.4% 0.3% 0.3%
ford 02 q1mm 8.1% 3.5% 6.6% 4.4% 1.3% 3.7% 1.2% 0.9% 0.8% 0.5% 0.4% 0.3%
ford 03 q1mm 4.5% 2.2% 4.3% 3.4% 1.2% 2.1% 1.1% 0.9% 0.6% 0.4% 0.3% 0.3%
qnxadas-junction-approach 6.3% 1.7% 1.9% 2.8% 4.6% 2.8% 1.8% 1.1% 1.0% 0.9% 0.8% 0.8%
qnxadas-junction-exit 8.7% 3.8% 2.6% 3.2% 3.8% 3.3% 2.3% 1.2% 1.4% 1.6% 1.2% 1.3%
qnxadas-motorway-join 7.6% 4.6% 3.1% 3.2% 3.3% 3.4% 1.9% 1.8% 1.5% 1.4% 1.2% 2.4%
qnxadas-navigating-bends 5.6% 2.3% 1.8% 2.4% 3.4% 2.2% 2.1% 1.6% 1.2% 1.2% 1.2% 1.0%
Overall average 6.6% 3.0% 3.7% 3.3% 2.6% 3.0% 1.7% 1.2% 1.0% 0.9% 0.8% 0.9%

TABLE III
OVERALL AVERAGE OF BD RATE AND COMPLEXITY.

Method Geom.BD-TotalRate Attr.BD-TotalRate Rate of
D1 D2 Reflectance Enc time

Li et al. [8] 1.8% 1.8% -21.9% 94.2%
Prop.1 -0.8% -0.8% -3.2% 97.5%
Prop.2 -0.8% -0.8% -3.0% 98.1%
Prop.3 -0.8% -0.8% -3.0% 98.2%

TABLE IV
COMPARISON OF BD RATE BETWEEN G-PCC ANCHOR AND THE PROP.3.

Point Cloud Geom.BD-TotalRate Attr.BD-TotalRate
D1 D2 Reflectance

ford 01 q1mm -0.5% -0.5% -1.6%
ford 02 q1mm -0.7% -0.8% -1.6%
ford 03 q1mm -0.3% -0.4% -2.4%
qnxadas-junction-approach -0.1% 0.0% -2.0%
qnxadas-junction-exit 0.0% 0.1% -1.7%
qnxadas-motorway-join -3.9% -3.9% -9.9%
qnxadas-navigating-bends -0.1% -0.1% -1.8%
Overall average -0.8% -0.8% -3.0%

shown in Fig. 3, the curves for G-PCC Anchor and Prop.3
intersect at certain points, which may imply that the BD-rate
calculation is not accurate [20]. However, the primary goal is
the improvement of the error rate, which has been achieved.

V. CONCLUSION

In this paper, we propose a method for rate control based on
G-PCC that updates the R-Q model parameters for each frame
using temporal correlations, specifically by employing LMS
and dynamically controlling its update step size. In addition,
for optimal bit allocation for each frame, we propose a bit
allocation method based on the R-Q model that is updated
for each frame. Experimental results show an improvement of
99.7% in error rate compared to conventional methods.
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