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Abstract—In this paper, we propose a novel framework for
ownership verification of deep neural network (DNN) models for
image classification tasks. It allows verification of model identity
by both the rightful owner and third party without presenting
the original model. We assume a gray-box scenario where an
unauthorized user owns a model that is illegally copied from the
original model, provides services in a cloud environment, and
the user throws images and receives the classification results as a
probability distribution of output classes. The framework applies
a white-box adversarial attack to align the output probability of
a specific class to a designated value. Due to the knowledge of
original model, it enables the owner to generate such adversarial
examples. We propose a simple but effective adversarial attack
method based on the iterative Fast Gradient Sign Method
(FGSM) by introducing control parameters. Experimental results
confirm the effectiveness of the identification of DNN models
using adversarial attack.

Index Terms—Adversarial example, Deep neural network
(DNN), Ownership verification

I. INTRODUCTION

Artificial intelligence possesses high information processing
capabilities and versatility. Among its various applications,
deep neural networks (DNNs) are widely utilized, and machine
learning tools are offered as cloud computing services, such
as Machine Learning as a Service (MLaaS). As trained deep
neural network (DNN) models take significant development
costs and they have high social value, it is crucial to protect
the ownership of DNN models.

Trained models are at risk of unauthorized misappropriation
of their parameters and algorithms by individuals seeking to
circumvent the effort and cost required for model development.
To take countermeasures against such misappropriation, DNN
watermarking and fingerprinting have been investigated for
the protection of intellectual property of DNN models [1],
[2]. DNN watermarking is a technique for embedding specific
information in a DNN model, such as internal structure and
weight parameters, during the training phase. On the other
hand, DNN fingerprinting extracts some unique model prop-
erties like decision boundaries as the fingerprint. It is less
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realistic to assume white-box access to the model’s internal
structure and weight parameters for verification. Instead, it
is assumed that the watermark/fingerprint will be obtained
by throwing queries to a suspected model and receiving the
responses. In such a case, the watermark/fingerprint reflects
the behavior of the model on the given trigger images as
the backdoor. The behavior is regarded as an identifier for
the ownership verification. In both cases, the identifier is
extracted from the suspected model through queries and then it
is compared against the constructed identifier of the original
model. There are two major drawbacks in these ownership
verification approaches. One is that the number of trigger im-
ages is limited as those are pre-determined during the training
of DNN models. The other risk is that unauthorized users
might recognize that they are being tested in terms of their
legitimacy. The behavior of the model on the trigger images
is generally peculiar compared with other inputs. Due to the
characteristics of queries and responses, unauthorized users
may recognize the action of ownership verification approach.

In this study, we propose a novel framework for verifying
the identity of DNN models by utilizing white-box adversarial
attacks [3], allowing both rightful owners and third parties to
demonstrate model ownership. With full access to the original
model, the owner can generate adversarial samples that serve
as proof of ownership, without disclosing the model. On any
given requests from the third party on arbitrary images and
specific probability values, the owner presents those accurate
adversarial samples which are extremely difficult to generate
without the model. Here, we assume a gray-box scenario
where a potentially copied DNN model operates in a cloud
environment under the control of an unauthorized user and
outputs per-class probability distributions.

We propose a novel white-box adversarial attack that ac-
curately manipulates the probability of a specific target class
while maintaining the original class’s probability. Our method
allows the owner to generate adversarial samples that adjust
class probabilities to designated values without revealing the
model. To avoid being noticed by unauthorized users, the
method ensures that the correct class probability remains
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dominant, preventing anomaly classifications.

II. RELATED WORK
A. Threat Model

We assume the following threat model, the rightful owner
is the creator of the original model, while the unauthorized
user is an entity that has illicitly obtained and deployed a
copied model in a cloud service which will be available as
an online API. The rightful owner seeks to verify the identity
of the model in two cases: (i) when attempting to confirm
whether the copied model in the cloud is identical to the
original model, and (ii) when proving to a third party that
the copied model is identical to the original model. Since
the unauthorized user denies the rightful owner’s claim and is
unlikely to disclose model parameters, the owner must conduct
verification without direct access to the copied model’s internal
structure and weight parameters. Moreover, given that the
unauthorized user can observe all queries and outputs, it may
attempt to manipulate or block specific queries to hinder
verification.

B. DNN Watermarking

DNN watermarking embeds information into models to
prevent unauthorized use and theft [1]. Methods include black-
box watermarking, which utilizes input-output relationships,
white-box watermarking, which embeds information in model
parameters, and gray-box watermarking, which embeds wa-
termarks into probability outputs [4]. Backdoor-based water-
marking, such as that proposed by Adi et al. [5], modifies
models to return specific outputs for trigger inputs. However,
these methods face several challenges:(i) If a model is al-
ready published without embedded watermarking information,
verification of ownership becomes challenging. (ii) Since
watermarking techniques require models to learn information
unrelated to their primary task, their outputs may exhibit
recognizable patterns. These patterns can be statistically an-
alyzed by malicious users, leading to anomaly detection.
Retraining the model may further reduce the effectiveness of
the watermark, diminishing its verification capabilities. (iii)
The presence of hidden watermarks may be noticed and it
will be removed/modified through retraining or fine-tuning
[6], [7]. Furthermore, the requirement for DNN watermarking
techniques to encode task-unrelated information may lead to
a decline in model accuracy.

C. DNN Fingerprinting

DNN fingerprinting extracts distinctive model characteris-
tics to verify identity. This approach utilizes adversarial sam-
ples designed near decision boundaries and verifies whether
a target model exhibits specific behavior [8]. Unlike water-
marking, it does not require embedding information directly
into the model. However, if the fingerprinting mechanism
is statistically analyzed, it may be detected as an anomaly.
In particular, the model’s output tendencies and decision
boundary patterns can be analyzed to identify the presence
of fingerprinting, leading to potential retraining or fine-tuning
to circumvent verification.

Unauthorized
user

Owner
Adversarial
attack

xadv

Dprob(p:’“ﬂe‘vﬁ;?m')

Fig. 1. The owner verifies the identity of the original model and the copied
model.

Unauthorized Meopy

Third
party

Dlmg(x’ xadv) Dprob(p""“'ﬂ""ﬁ: t’!'))

Fig. 2. A third party verifies the identity of the original model and the copied
model by requesting the owner to create the adversarial sample for a given
image with specified conditions.

III. PROPOSED METHOD

In this study, we propose an ownership verification method
that applies adversarial attacks to enable both the owner and
a third party to verify the identity of an original model and a
copied model deployed in a cloud environment.

A. Assumed Environment

We consider two scenarios for verifying the identity of an
original model and a copied model: (i) The owner verifies
whether the copied model deployed in the cloud is identical
to the original model, as illustrated in Fig. 1. (ii) The owner
proves the identity of the copied model to a third party and
claims ownership, as illustrated in Fig. 2.

In Fig. 1 and Fig. 2, M and M°® represent a classification
DNN model for k-class image classification designed and
trained by a rightful owner and its unauthorized copied model,
respectively. These models do not contain special embed-
ding structures. Model M is preserved locally only at the
owner, whereas MPY is deployed in a cloud environment
and operates as a gray-box scenario such that it outputs class
probability distributions.

Let  denote an input image. The output probability vectors
of M and M*®P for a are represented as p and p°°PY, re-
spectively, where each element corresponds to the probability
of a class in a k-dimensional vector. Similarly, the output
probability vectors for an adversarial sample x*!" are denoted
as p and p°PY for M and MY, respectively. The correct
class for  under M is ¢ = argmax p;. Additionally, let
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DP(.) and D™é(.) be functions that calculate probability
distance and perceptual image distance, respectively.

B. Adversarial Attack

An adversarial attack is a technique that generates ad-
versarial samples by intentionally perturbing input data to
induce misclassification in a machine learning model. These
perturbations are small enough to be imperceptible to the
human eye, making it difficult to be recognized.

The computation of perturbations is categorized into two
types based on access privileges: (i) White-box attacks: Exe-
cuted when the internal structure and parameters of the model
are accessible. (ii) Black-box attacks: Executed when only
input-output observations are available.

Additionally, adversarial attacks are classified based on
their objectives: (i) Targeted attack: Aims to misclassify an
adversarial sample into a specific class. (ii) Untargeted attack:
Aims to misclassify an adversarial sample into any incorrect
class.

A targeted attack is more accurate in a white-box setting
with internal model access, whereas its success rate drops in
a black-box setting due to limited information.

C. Overview

The objective of the owner, as illustrated in Fig. 1, is to
verify whether M = M°PY. To do this, the owner specifies
a target class ¢’ and its target probability pi=". Using M,
the owner generates an adversarial sample :cddv via a white-
box targeted adversarial attack under the restriction of the
perceptual distance between x and x*®, DM(x, £3). Re-
member that £*® must not be excessively altered from the
original image x. The output probability vector p = M (z%)
is expected to satisfy p. = pc/ *, while argmax j; remains ¢

to prevent the unauthorized user from detectirllg the verification
approach.

Next, the adversarial sample 2 is fed into M°°PY, and
the output probability vector p°°P = MP¥(224) is obtained.
If the probability distance between the specified probability
and the observed probability, DP™ (", 550%), is sufficiently
small, it determines that M and M PY are identical.

In the scenario depicted in Fig. 2, the owner provides proof
of model identity to a third party. The third party selects an
arbitrary image x, a target class ¢/, and a probability p*",
and provides them to the owner as a request. The owner,
possessing complete knowledge of M, generates an adversarial
sample ! according to the request and returns it to the
third party. The third party then queries M with 24
and evaluates the response whether the observed probability
satisfies poy™ & pi =", namely DPP(pl 50PY) ~ 0. Since
accurate adversarial attacks are only possible with full model
access, successful verification confirms the owner’s possession
of MeoPy,

D. Generation of Adversarial Samples

In this study, we propose a new approach based on the
targeted [-FGSM (Iterative-Fast Gradient Sign Method) [3] as

a white-box adversarial attack that controls the probability
of a targeted class while satisfying ¢ = argmax p;. We

propose targeted I-FDGSM (Iterative-Fast Dual Gradient Sign
Method), a novel method that allows simultaneous control of
two class probabilities.

1) I-FGSM: 1-FGSM is a white-box adversarial attack pro-
posed by Kurakin et al., which is an extension of FGSM [9].
It utilizes the gradient of the loss function obtained through
backpropagation to compute perturbations iteratively. Let 2"
represent the adversarial sample images of a at i-th iteration.
The update rule for targeted I-FGSM is expressed as follows:

i =z,

sign (V,C(z%", ’)} (1)

Here, 5,&6/7 N,C represent the maximum perturbation
range, the magnitude of perturbation at each step, the number
of iterations, and the loss function, respectively. The term
V.C(x*YN, ') denotes the gradient of the loss function C'
concerning the target class ¢’. By applying perturbations in the
inverse direction of this gradient, the loss C' for the target class
¢’ is reduced, thereby enabling a targeted attack. However,
this method only considers the influence on ¢/, leading to a
situation where the probability of ¢’ becomes excessively high
while the probability of ¢ decreases significantly.

2) I-FDGSM: To maintain the highest probability of ¢
while adjusting the probability value of ¢/, we propose I-
FDGSM, formulated as follows:

adv : adv
x'n'y = Clipg {wN —a*

i =z,

adv adv__
vy 1 = Clipg E{

™ Sign (56%0(;@3& ¢) + BV, O (x, ')) } 2)

Here, o™, 3¢, 65 represent the magnitude of perturbation
at each step and the coefficients applied to the gradients of ¢
and ¢/, respectively. By appropriately tuning these parameters,
it becomes possible to control the probabilities of both classes.
It leverages the interaction between the gradients of the two
classes to reduce perturbations and improve effectiveness.

Algorithm 1 illustrates the procedure to create adversarial
samples 22",

IV. COMPUTER SIMULATION

In this study, both M and M are set as CNN models
performing an image classification task on the ImageNet
dataset [10], consisting of k£ = 1000 classes. In the following
sections, we describe experiments evaluating the adversarial
sample generation capability of [-[FDGSM and the verification
of model ownership.

A. Adversarial Sample Generation

We conducted a comparative experiment to evaluate the
capability of adversarial sample generation using I-FGSM and
I-FDGSM.
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Algorithm 1 I-FDGSM

Require: Original Image: x, Model: M,
Target Classes: ¢, ¢/, Target Probab111ty Value: p,,
Factors of I-FDGSM: o™, 3¢ =1 ﬂc =1,

Averaging Interval: [, Tolerance for Error: Tdlff

Ensure: Adversarial Image: x*
adv

target

Iy =

2: for N € {1,2,--- , N™*} do

3. adv Adv(az*}{}v LM, acom’ﬁc’ﬂc’)
4 PN M(zR)

5: if N mod!l=0 then

6: pr = lZz N—l+

7: 1f P < (1) leff) ‘;fget then
8: B« B +1

9: else

10: B+ B+1

11: end if

12: if (1— Tdiff) arget < ﬁme‘”‘ (1+ Tdiff)ptca;rge‘ then
13: a®™m «— 0. 5 a®

14: end if

15: if o™ < 10710 then

16: 2 = :r,}‘\‘}v

17: break

18: end if

19: end if
20: end for

For validation, perturbations are applied to an image x
randomly selected from ImageNet based on the information
of M. The model M is set as a pre-trained ResNet50-v1
[11], provided by PyTorch [12]. Using Eq.(1) and Eq.(2),
adversarial samples x*®" are generated over a maximum of
N™ jterations, and the output p = M (x*®) is obtained for
each iteration N. The variations of p. and p., with respect to
N are analyzed.

The parameters for each method are set as follows for
validation: N™* = 1000, a® =5 x 1074, a®™ = 1 x 1073,
e =0.05,1=5, and T4 = 5 x 1073, These parameters were
chosen empirically to ensure stable convergence and effective
probability control in preliminary tests.

1) Results and Discussion: The results of I-FGSM and I-
FDGSM are shown in Fig. 3. The blue circles and red crosses
in the figure represent the variations of p. and p., with respect
to the number of iterations V.

From Fig. 3 (a), in I-FGSM, p. and p. rapidly decrease and
increase, respectively, as the number of iterations N increases,
with p. converging to a value close to 1. On the other
hand, from Fig. 3 (b)(c)(d), in I-FDGSM, p. converges to
a value sufficiently close to the specified p.s**'. Furthermore,
P remains at the highest probability value and converges with
the increase of N. It is interesting to note that the sum of p.
and p. approaches 1. This result suggests that, in Eq. (2),
considering the gradient influences of both ¢ and ¢’ enables
the adjustment of probabilities to the local optimal values for
the two classes.

H

TABLE I
SIMULATION CONDITIONS

C/

target

Randomly selected from 1000 classes
Uniform{0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4}

c/ R
acom ¢ [ diff 1x1073,5x1072,5,5 x 10~3

B. Ownership Verification of Models

To verify the identity of copied models using I-FDGSM, we
conducted ownership verification experiments.

1) Experimental Conditions: The input image x is ran-
domly selected from the ImageNet dataset, and ¥ is gen-
erated using I-FDGSM to satisfy P targe based on Eq
(2) and Algorithm 1. In practice, if the owner performs the
verification, ¢’ and p. are specified by the owner. Meanwhile,
when a third party conducts the verification,  and ¢ and p,
are specified by the third party.

The probability distance function DP™®(-) is used to calcu-
late the relative error between the obtained output probability

~
~

po? and the target probability pi =", as given by Eq. (3):
‘ target ﬁcopy‘
b/, U t ’ ’
DPI’O ( arge ’pz(/)PY) c et C (3)

o

Furthermore, the perceptual distance function D™Mg(.) is
used to measure the similarity between x and x! using
SSIM(-) (Structural Similarity Index Measure) [13], which
considers human visual perception.

The simulation conditions are summarized in Table I.

2) Results and Discussion: Using PyTorch’s ResNet50-
vl as M and ResNet50-vl and ResNet50-v2 as MPY, we
evaluated 100 randomly selected images from ImageNet. The
results are shown in Fig. 4, where blue bars represent the
cases where M = M®P, and red bars represent the cases
where M # M.
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Fig. 3. Variations of p. and p., with respect to N. (a): I-FGSM, (b)(c)(d):
I-FDGSM, with p'y*" = 0.1,0.2,0.4.
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Occurence

. M= MeoY
M = MeoPY

Y] [
target ~copy.
DPrb(p 19, )

Fig. 4. Distribution of DP*(p'ye® 55PY). Blue bars: M = M» =
ResNet50-vl. Red bars: M = ResNet50-v1, M PY = ResNet50-v2.

As shown in Fig. 4, DPeb o~ (0 for M = MPY and
DP°® ~ 1 otherwise. This result indicates that adversarial
samples generated using [-FDGSM are well adjusted for M,
allowing more accurate probability control only for the model.
Consequently, if p. in MPY can be controlled, it indicates
that the owner has sufficient knowledge of M, proving the
ownership of MPY to a third party without presenting it.

Next, model ownership verification was conducted using
various ResNet and VGG models [14] from PyTorch. For each
model, 100 randomly selected images from ImageNet were

used as z. Fig. 5 represents the average of DP®P(p5®t 5o0P)

value, denoted by 5pmb, for each pair. From the figure, when
M = M, D" ~ 0, and when M # MY, D" ~ 1.
This indicates that probability value adjustments are possible
only for specific models, thereby proving the ownership of
M®PY across all tested model pairs.

It is worth noting that the average of SSIM(x,x cal-
culated for each of the 100 generated images per M was
at least 0.9875. This confirms that perturbations introduced
by I-FDGSM are visually imperceptible, making detection by
unauthorized users difficult.

adv )

V. CONCLUSION AND FUTURE WORK

In this study, we proposed a novel framework for verifying
the identity of trained DNN models without presenting the
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Fig. 5. Heatmap of the average DP™" (plc/‘],'gel7 ﬁcc‘fpy

and MCOPY.

) values for multiple M

original model. This framework enables the rightful owner to
prove the model’s identity to a third party while preserving
confidentiality. To avoid detection by unauthorized users,
we introduced I-FDGSM, an adversarial attack method that
precisely controls the probability values between the original
and target classes. Experiments confirmed its high-accuracy
verification capability.

Due to the transferability of adversarial perturbations, the
proposed method is expected to remain effective against
slightly modified models such as those retrained or pruned.
Evaluating this robustness is left for our future work. Fur-
thermore, one of the threats in the proposed method is the
potential detectability by anomaly detection mechanisms. A
prior work has shown that such patterns can be flagged even
in encrypted domains like VoIP traffic [15]. Improving stealth
and robustness against such detection is another direction for
future work.
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