
Decoding Synthetic Face Detectors: Enhancing
Interpretability with 3D Morphable Models

Giovanni Affatato, Edoardo Daniele Cannas, Sara Mandelli, Paolo Bestagini, Marco Marcon, Stefano Tubaro
Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy

giovanni.affatato@polimi.it, edoardodaniele.cannas@polimi.it, sara.mandelli@polimi.it, paolo.bestagini@polimi.it

Abstract—The rise of synthetic face generation and deepfakes
has introduced significant challenges in multimedia forensics,
particularly in ensuring the authenticity of visual content. While
many detectors exist to identify these forgeries, they often
operate as black boxes, providing little insight into the decision-
making process. In this paper, we propose a novel method for
improving the interpretability of synthetic face detectors. Our
approach leverages 3D Morphable Models (3DMMs) to analyze
and interpret the output of a heatmap-based detector, identifying
the most important facial regions for detection. Specifically, we
utilize 3DMMs to reverse-engineer the detector by averaging
heatmaps from multiple images warped onto a common face
geometry, revealing which areas the detector focuses on most.
We validate our proposed approach by testing a state-of-the-
art synthetic image detector on a dataset of real and synthetic
faces generated using various Stable Diffusion (SD) models,
offering insights into its behavior. Our experiments provide a
valuable understanding of the internal workings of synthetic face
detection, contributing to the growing need for interpretable and
trustworthy forensic tools in the fight against synthetic media.
Our experimental code is available at https://github.com/polimi-
ispl/synthetic image interpretability.

Index Terms—Synthetic image detection, 3D morphable mod-
els, interpretability, explainability

I. INTRODUCTION

The rapid progress of artificial intelligence and Deep Learn-
ing (DL) has enabled the creation of highly realistic synthetic
images and videos commonly known as deepfakes [1]. In
particular, deep learning techniques can generate faces of
unprecedented realism, threatening multimedia content’s trust-
worthiness and integrity. The dangers we may face range from
fraud to spreading fake news and revenge porn, eventually
leading to loss of trust in digital content [2].

In response to the proliferation of these media, the mul-
timedia forensics community has strongly emphasized the
development of tools and techniques to detect them [1], [3],
[4]. The state-of-the-art techniques are typically data-driven
models that function as black boxes, providing little to no
insight into the decision-making process backing the detection
of synthetic content [5]. This lack of transparency hampers
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Fig. 1: Examples results of the proposed interpretability framework. Given an
image (left), we return a real-valued heatmap by processing the image through
a forensic detector to highlight the likelihood of every pixel being synthetically
generated (second column). 3DMMs can be exploited to warp a facial image
into its texture space (third column); we do such operation directly on the
estimated heatmap (right), in order to align the detection scores related to
facial semantics (eyes, noise, mouse, etc.) between diverse faces.

trust in these systems [6] and limits the ability to understand
the cues that characterize manipulated content [7], [8].

In this work, we focus on improving the interpretability
of forensic detectors developed for identifying synthetically
generated faces. In particular, we investigate one state-of-the-
art detector and employ it to generate a 2D heatmap from the
image under analysis, highlighting the likelihood of each pixel
being synthetically generated. Our approach aims to provide
insights into which regions of a facial image are most critical
for detection. We achieve this by leveraging 3D Morphable
Models (3DMMs) for representing and manipulating 3D face
shapes. 3DMMs use statistical techniques to parameterize
the geometrical distribution of the 3D shapes of a dataset
of exemplar faces. Furthermore, this representation can be
exploited to reconstruct a subject’s face from a single image,
making it a versatile and powerful analysis tool.

Researchers successfully employed 3DMMs in disparate
applications (e.g., face recognition [9], entertainment [10],
medical applications [11]), and even for generating forged
content via face replacement [12] and face reenactment [13]. In
multimedia forensics, the authors of [14] exploited 3DMMs to
perform the decomposition of 3D reconstructed faces and fed
a Convolutional Neural Network (CNN) to classify synthetic
images. The authors of [15] used 3DMMs in a person-of-
interest setting to classify manipulated videos with a CNN.

In the field, our work deviates from the cited articles by
emphasizing the analysis of the results derived from these
networks. We explore a novel way to benefit from the an-
alytic potentiality of 3DMMs to build a forensic tool that
can help shed light on the intricacies of DL methods. More
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Fig. 2: Examples of 3D facial reconstruction and UV texture extraction
allowed by 3DMMs. From left to right: the input facial image, its 3D facial
reconstruction and the extracted UV texture.

specifically, we employ 3DMMs to reverse-engineer synthetic
face detectors. By running them on facial images, we warp
detection heatmaps onto a shared standard face geometry (i.e.,
the detection predictions related to the eyes, nose, and mouth
of faces are all aligned among themselves).

Fig. 1 reports examples of our proposed interpretability
framework. Given an image under analysis (on the left),
we extract a real-valued detection heatmap via a selected
synthetic image detector, enabling us to highlight the pixel
regions with the highest detection scores (second column). By
exploiting 3DMMs, we can warp each face into its texture
space (third column) to move all facial key points in fixed
locations. More interestingly, we can do the same operation
for the extracted detection heatmaps: this operation allows us
to compare detection results for multiple faces, potentially
identifying which facial regions are more crucial for detection.
This approach is not only widely applicable to any existing
image forensic detector, but it also does not employ re-training
of any parts of the pipeline on the data at hand.

To summarize, our proposed methodology aims to enhance
the interpretability of face forgery detectors towards the de-
velopment of more transparent forensic tools. In particular:

• we introduce a new method to analyze the results of
existing synthetic face detectors via 3DMMs. This allows
the inspection of facial regions for which the detector
presents higher manipulation scores;

• we validate our pipeline by evaluating a state-of-the-art
synthetic image detector on a dataset of synthetic faces
generated through Stable Diffusion (SD) generators [3],
providing some insights on its responses.

II. 3D MORPHABLE MODELS

In computer vision and computer graphics, 3DMMs are
generative techniques that model the 3D shape and appearance
of a face [16]. The general assumption is that 3D scans of
facial images are in a dense vertex-by-vertex correspondence:
a vertex has the same semantic meaning across all 3D faces
(e.g., the i-th vertex represents the tip of the nose on all faces).
Given a dataset of exemplar 3D faces S = {S1,S2, ...,SN},
each 3D shape Si ∈ S can be represented as a matrix
containing in a specific order the 3D coordinates of its M
vertices, i.e. Si = [Xi

1;Y
i
1 ;Z

i
1, ..., X

i
M ;Y i

M ;Zi
M ] ∈ R3×M .

The generation of a new 3D face S(α) ∈ R3×M can be
performed by linearly combining the example faces:

S(α) = S1α1 + S2α2 + ...+ SNαN (1)

where α = [α1, α2, ...αN ]T are the coordinates of sample
faces in S. By combining realistic examples of faces, (1)
effectively models the shape space of plausible faces by
intrinsically capturing the spatial distributions of each vertex’s
coordinates.

The geometric prior modelled by 3DMMs provides a way to
perform the 3D reconstruction of a face starting from a single
image. A 3D shape S(α) ∈ R3×M can be projected onto the
image plane by applying to each 3D vertex along its columns
a known orthographic projection T ∈ R2×3 and a similarity
transformation, composed by a rotation R ∈ R3×3, a scale
factor s, and a translation t2D ∈ R2:

S2D = sTRS(α) + t2D, (2)

with S2D ∈ R2×M . The 3D facial reconstruction problem can
be formulated as estimating the parameters Θ = [s,R, t2d,α]
given an image. Examples of 3D facial reconstructions (where
the 2D points of resulting S2D maps are shown in gray scale)
are reported in the second column of Fig. 2.

3DMMs allows to perform another useful operation, which
is the UV texture extraction from an image. A 2D texture is an
image that stores the color information of each vertex of a 3D
object. The UV mapping is the map that assign to each vertex
of the 3D shape a color from 2D texture. Once estimated the
parameters Θ, it is possible to sample a given facial image I
via the unwrapping operation U : R2 → R2, which associates
each 2D vertex v2D = (x, y) along the columns of S2D to its
related texture coordinates vUV = (u, v), such that U(v2D) =
vUV. In specific, each pixel in the UV texture IUV of the image
I is defined as

[IUV]u,v = [I]x,y. (3)

Examples of UV textures are shown in the last column of
Fig. 2. Notice that, in the UV domain of 3DMMs, each pixel
represents the same semantic point across different faces. For
example, the third vertex of each 3D reconstructed face is
always mapped to position (û, v̂) for each face, independently
from the actual shape. The nose tip, the eyes and the mouth
are always mapped into the same UV coordinates for every
input face, independently on the facial expression or subject
pose. This relation sets up common ground for performing a
deeper statistical analysis across all faces.

III. PROPOSED METHODOLOGY

Our proposed methodology is presented in Fig. 3 and is
based on five main steps:

1) Patch extraction: given a facial image under analysis,
we sequentially extract squared patches from it.

2) Synthetic detection: every patch is processed by a syn-
thetic image detector to discriminate between genuine
and synthetic content.
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Fig. 3: Sketch of the proposed detector interpretability framework.

3) Heatmap estimation: patches’ scores are assembled to
produce a real-valued heatmap reporting the likelihood
of each pixel being synthetically generated.

4) 3D facial reconstruction: we employ 3DMMs to esti-
mate a 3D reconstruction of the face under analysis.

5) Heatmap warping: we exploit 3DMMs to warp the
estimated heatmap in texture coordinates.

The first three steps are independent from 3DMMs and are
related to synthetic image detection. The last two stages
integrate 3DMMs into the analysis process. In the following
lines, we provide details for each of them.
1. Patch extraction. Given an image I, we build our heatmaps
by processing the image in patch-wise fashion, similarly to
the work proposed in [17]. Specifically, given an image I,
we extract small square patches of P ×P pixels sequentially.
Each patch is denoted as PIi,j , where (i, j) represents the
coordinates of the top-left corner pixel of the patch in the
original image I. Patches are extracted with a certain overlap,
using a stride of S × S pixels in both dimensions.
2. Synthetic detection. Given a synthetic image detector D,
we process each patch PIi,j through it, obtaining a real score
pi,j = D(PIi,j ) with pi,j ∈ [0, 1]. This score pi,j represents
the likelihood of the patch being synthetically generated.
3. Heatmap estimation. Patch scores are aggregated to create
a real-valued heatmap that differentiates between real and syn-
thetic pixels. We arrange the detection scores according to their
corresponding patch positions in the analyzed image, resulting
in an estimated tampering heatmap H. Each score pi,j is linked
to a patch of the heatmap PHi,j , which is positioned at the
same location as the corresponding patch PIi,j in the query
image. The patch PHi,j is filled with constant pixel values, all
equal to pi,j . During the reconstruction process, the heatmap
patches are overlaid according to the stride value. In regions
where the patches overlap, the probability scores are averaged,
resulting in a more refined prediction estimate.
4. 3D facial reconstruction. To perform the 3D reconstruction
of the face image, we rely on 3D Dense Face Alignment
Version 3 (3DDFA-V3) [18], which is a DL method based
on a CNN. The architecture works in two steps. First, the
input image I is segmented to discern characteristic parts of
the face, such as mouth, eyes, nose, and so on. Then, the
network regresses the parameters Θ by exploiting the extracted
segmentation information of the facial features.
5. Heatmap warping. We rely on the parameters Θ estimated
for the 3D facial reconstruction to advance the analysis of

the detector’s results further. For each 3D face model, instead
of extracting UV textures from the image as done in the
“standard” workflow reported in (3), we extract these textures
directly from the heatmap H. This process allows us to warp
the extracted heatmap into a space where texture features
are always aligned among faces. In other words, the warped
heatmap scores related to the subject eyes will lie in the
same pixel location for all the investigated faces, and similar
reasoning is valid for other key points like the nose and the
mouth. In doing this, (3) becomes

[HUV]u,v = [H]x,y. (4)

Our proposed warping operation enables us to perform a
pixel-by-pixel comparison between the detection heatmaps of
different faces. Indeed, each pixel in HUV shares the same
semantic meaning for all the investigated images. This feature
might be very helpful in case multiple faces sharing similar
characteristics (e.g., all coming from the same generator) must
be addressed by a detector. In principle, a forensic analyst
could exploit our proposed framework to have a clue on the
general behavior of a detector over a specific dataset. For
instance, the arithmetic mean between the warped heatmaps
of all faces might provide useful insights on the pixel areas
more prone to return high synthetic scores, thus enabling the
focus of forensic investigations on a specific facial region. In
our experiments, we show that the proposed strategy reveals
a valid instrument for detectors’ interpretability.

Furthermore, it is worth noticing that, by warping the
heatmaps after the detection stage, we are preventing the
introduction of interpolation artifacts that could hinder the
detector’s functioning and interpretability.

IV. PROPOSED EXPERIMENTAL ANALYSIS

The proposed framework is general and can be applied with
any kind of 3DMM method or forensic detector. In this section,
we demonstrate its applicability with a real case scenario, i.e.,
the analysis of the response of a synthetic image detector on
a dataset of faces. Our goal is to understand if the detector
focuses on specific face attributes, e.g., eyes, mouth, ears, etc.,
and if this response is coherent across images generated by
different techniques. Such a study is paramount to understand,
for instance, if the detector is biased towards specific semantic
features for a specific generator. In the following, we illustrate
the setup followed in our experiments.
Dataset. The pristine face images dataset utilized for our
analysis comprises 1081 subjects in different poses, with size
600 × 600 pixels [19]. Synthetic images are SD laundered
versions of pristine data computed through SD-1.5 [20], SD-
2.1 [21], SD-XL [22] and SD-XL-turbo [23] (1081 images
each) by following the procedure described in [3]. More
specifically, the process of SD laundering consists of pass-
ing an original image through SD encoder and decoder.
The semantic content of the produced synthetic image is
completely replicated, with very few details (barely visible
to the human eye) potentially changed, depending on the
specific autoencoder used. SD laundered images carry artifacts
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Fig. 4: Examples of the UV textures we can extract from images and heatmaps.
From left to right: input image, UV textures of the input image, heatmap, UV
textures of the heatmap. From top to bottom: real sample, SD-1.5, SD-2.1,
SD-XL, and SD-XLTurbo.

characteristic of synthetically generated content; thus, they are
typically detected as “fake” by synthetic image detectors [3],
[4]. We select these synthetic images to ensure an almost
perfect alignment in the semantic content between real and
fake datasets. This makes our analysis independent of potential
discrepancies between the semantics of the two classes.
Synthetic image detector. As a forensic detector, we select the
one recently proposed in [3], which returns excellent results
on the above-reported dataset (please refer to [3] for more
details). Notice that while we could apply our framework to
any detector potentially, i.e., even one failing in the detection
task, we believe the proposed interpretation analysis is more
interesting if the investigated detector achieves good classifi-
cation results. Indeed, in this way, we can turn visible insights
into valuable elements for forensic investigation. Given a query
image, we extract 96× 96 color patches with a stride of 8× 8
pixels. We process each patch through the detector, returning
the softmax score associated with the synthetic class. Finally,
we assemble all patches’ scores by following the procedure
reported in Section III.

V. RESULTS

In this section, we report the main results of our experi-
mental analysis. Fig. 4 reports some image samples from the
dataset (left column), together with the heatmaps extracted by
the detector (second column) and their UV texture decompo-
sition obtained by the 3DMM model giving the face as input
(third column) and the detector’s heatmap (fourth column).
Every row refers to a different dataset: we start from the top
with a real image and then report results for SD-1.5, SD-2.1,

SD-XL and SD-XLTurbo, respectively. Blue color refers to
heatmap values closer to 0, while yellow means 1.

As we can inspect, the patch-wise heatmap allows us to
translate the image-level decision into a pixel-level map,
indicating the areas of the faces with a higher likelihood of
being synthetically generated. Given the different poses of
the various subjects, a direct comparison between heatmaps
is not possible. By applying the texture coordinates warping
transformation instead, we can directly compare the detector’s
response relative to the same face attributes, e.g., mouth, eyes,
forehead, etc, across different samples in various exposing
conditions.

As expected, the real image shows blue values in almost
all pixels, meaning for good detection accuracy in correctly
classifying real pixels. The image generated through SD-1.5
shows a completely different heatmap with respect to those
generated with newer SD versions. In case of SD-1.5, all
facial regions seem to have the same importance for synthetic
detection. This might be a sign of stronger generation artifacts,
easier to detect, that have been attenuated in newer generators.

Analyzing more closely the last three rows of Fig. 4,
we can gain other interesting insights. The face images of
these rows have been generated through different generation
techniques (i.e., different SD versions) yet the detector reports
very similar responses in the same areas, namely the nose, the
cheekbones and the eyebrows. This response becomes clearer
thanks to the warping executed by the 3DMM, which corrects
the partial face tilting of the subjects and suggests that these
generators might, therefore, introduce similar artifacts that are
coherently picked up by the detector in those pixel areas.

To validate our intuition, in Fig. 5 we report the UV texture
heatmaps averaged across real samples and those generated
by the same SD technique. These average results seem to
confirm our previous considerations. In case of Fig. 5a, the
detector does not focus on any specific facial attributes and
does not show signs of false positives, re-assuring us of
its discriminating capabilities. For all generators except SD-
1.5, we can see that, on average, the central face area has
the highest synthetic generation scores. Given our particular
experimental setup (there are no semantic differences between
the different categories of synthetic samples), the fact that
the detector reports higher scores for the same facial features
might be a clue for the presence of generation artifacts in that
specific region. Considering that all the synthetic generation
techniques in the dataset are based on the SD family, such a
hypothesis, i.e., the possibility that all SD generators present
systematic artifacts, is particularly fascinating. We reserve for
future studies the analysis of this phenomenon.

Finally, Fig. 6 presents the results of the reverse warping of
the UV texture heatmaps of Fig. 4 onto the original samples.
As we can inspect, in this way, the nose areas are clearly the
most detected as synthetic by the detector.

VI. CONCLUSIONS

In this paper, we presented a novel framework that enhances
the interpretability of synthetic face detectors by leveraging

808



(a) Real. (b) SD-1.5. (c) SD-2.1. (d) SD-XL. (e) SD-XLTurbo.

Fig. 5: Average heatmaps from real and synthetically generated samples by the various generators in the dataset.

Fig. 6: Reverse warping of the UV heatmaps for Fig. 4 samples.

3DMMs. By extracting heatmaps produced by a synthetic
image detector and exploiting 3DMMs for mapping them onto
a common facial geometry, we were able to identify and
highlight the specific facial regions that contribute most signif-
icantly to detection results. Our framework is versatile and can
be applied to a wide range of detectors and 3DMM methods,
making it a valuable tool for researchers and practitioners in
multimedia forensics. By applying our technique, we can offer
deeper insights into the patterns and biases of synthetic face
detectors, ultimately contributing to the development of more
transparent, interpretable, and reliable forensic tools.

In the future, we will explore the integration of our
framework with more advanced 3DMMs to further enhance
the precision and robustness of the interpretability process.
Moreover, applying this approach to a broader set of detectors
and datasets, also considering failure cases could validate
its effectiveness and generalization across different synthetic
media detection scenarios.
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