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Abstract—Randomized Smoothing (RS) has been proposed
as a method to develop deep learning classifiers with certified
robustness, i.e., for which a certain level of robustness can be
theoretically guaranteed. In this paper, we explore the application
of the RS technique in the context of multimedia forensics,
focusing on the prominent task of synthetic image detection. Our
experiments, carried out on the task of detection of images gener-
ated by StyleGAN2 and Latent Diffusion models, reveal that the
input pre-processing, the input size and in particular the network
architecture have a noticeable impact on the certification perfor-
mance. In particular, we achieved the best performance with
EfficientNetB4, while we found that the certification achieved
by detectors based on general-purpose features, namely CLIP,
is poor. We also evaluated the performance of the RS synthetic
image detectors against common image post-processing, showing
that they exhibit strong robustness against a wide variety of
processing, even when the distortion introduced by the processing
exceeds the one the detectors can provably withstand.

Index Terms—robust detection of AI-generated images, deep-
fake detection, certified robustness, adversarial machine learning

I. INTRODUCTION

The development of forensic tools to distinguish real images
from images generated by AI generative models, commonly
referred to as synthetic images, is receiving increasing atten-
tion due to the importance of preserving the trustworthiness
of digital media. Deep neural networks (DNNs) have been
proven to be able to detect images produced by generative
models with very high accuracy. However, like all DNN-
based classifiers, synthetic image detectors are vulnerable to
adversarial examples, i.e., imperceptible perturbation capable
of misleading detectors and inducing wrong classification of
fake images as real [1].

A common approach to improve the adversarial robustness
of models is adversarial training [2], which consists of aug-
menting training with examples of attacked images. However,
since adversarial training is an empirical defense, there is no
guarantee that the prediction made by the robustified classifier
is immune to adversarial perturbations. Indeed, robustness is
often achieved only against a specific attack algorithm or a
category of attacks, and such kinds of defenses can often be
broken by stronger or different types of attacks [3].
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When dealing with security-related applications, obtaning
certified defenses that are provably robust to adversarial pertur-
bations is of paramount importance. Randomized Smoothing
(RS) has been proposed in machine learning research as a
solution to certify the robustness of classifiers [4], [5]. An RS
classifier makes a prediction on an input sample by perturbing
it with Gaussian noise and deciding in favor of the class
that the base classifier is most likely to predict. By doing
so, a correct prediction can be theoretically guaranteed for
the input within a certain radius [4]. This radius theoretically
defines the minimum distortion an attacker must introduce to
cause a misclassification, ensuring that no adversarial example
can exist within this radius. Compared to other methods for
robustness certification, the RS approach has gained a lot
of interest due to its generality and scalability, as it can in
principle be applied to any classifier.

In this paper, we propose to exploit the RS approach to
build synthetic image detectors with certified robustness. To
the best of our knowledge, this is the first time certification
methods have been applied to image forensic tasks. Given
that synthetic image detectors (and more in general, detectors
dealing with image forensic tasks) typically rely on subtle
statistical traces [6], which are more sensitive to noise, the
effectiveness of the RS approach may be limited in this
context, resulting in extremely small certified radii. To achieve
good certification performance with the RS approach, in fact,
base detectors have to be robust against (strong) Gaussian
noise perturbation, which often requires training them for this
purpose. Our experiments, carried out on the StyleGAN2 and
Latent Diffusion (LD) detection tasks, reveal that the network
architecture adopted to implement the RS detector plays a
major role. In particular, a high degree of certification can
be achieved using an EfficientNet-B4 base detector, while the
certification is poor in the case of cutting-edge detectors based
on pre-trained general-purpose features like CLIP (Contrastive
Language-Image Pre-training) [7]–[9]. We also found that the
input pre-processing and the image size have an impact on the
performance. In particular, the normalized certified radius is
larger in the case of detectors trained on images with larger
input size. We also evaluate the performance of the RS de-
tectors against common image post-processing/manipulation.
Our experiments reveal that strong robustness can be achieved
against a wide variety of processing operations, even when
the distortion introduced by the processing exceeds the one
the detector can provably withstand.
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II. BACKGROUND ON RANDOMIZED SMOOTHING

Randomized smoothing (RS) was proposed in [4] as a
model-agnostic and scalable method to develop classifiers with
certified robustness. The robustness against attacks is formally
guaranteed by the fact that no perturbation within a certain
radius of the input -namely, the certified radius - can change
the classification result, hence no adversarial example can be
found at a distance smaller than this radius. In principle, with
this method, any classifier can be turned into a new classifier
that is certifiably robust to adversarial perturbation under L2

norm. Specifically, the smoothed classifier is obtained from
a base classifier f as follows. Given a point x ∈ Rd, the
smoothed classifier assigns x to the class most likely to be
returned by the base classifier f when x is perturbed with
addition of isotropic Gaussian noise (with standard devia-
tion σ). In this paper, we focus on binary detectors, hence
f : Rd → {0, 1}. Then, the smoothed classifier gσ is a
deterministic classifier defined as:

gσ(x) = arg max
y∈{0,1}

Pn[f(x+ n) = y], n ∼ N (0, σI), (1)

where Pn[A] denote the probability of A computed over n.
Let π0(x) := Pn[f(x+ n) = 0] and π1(x) := 1− π0(x), and
let

R(x, σ) = σΦ−1(πgσ(x)(x)), (2)

where Φ is the cumulative distribution function of the standard
normal distribution N (0, I). It has been proven in [4] that, for
any input x, gσ classifies all the points in a L2 neighborhood
of x of radius δ ≤ R(x, σ) in the same way. This ensures that
no perturbation of x (be it adversarial or not) whose norm is
lower than R(x, σ) can modify the decision of gσ .

In practice, the RS classifier is implemented via Monte
Carlo simulations over N random i.i.d. samples {ni}Ni=1

drawn from N (0, σI), by aggregating the decisions on noisy
samples via majority voting. The aggregated average of the
scores gives an approximation of the confidence π0(x) (hence
π1(x)). The practical classifier g̃σ only approximates gσ and
corresponds to gσ when N → ∞. According to [4], a very
good approximation can already been achieved with N = 105.
Obviously, testing the RS detector introduces an overhead,
which can be regarded as the price to pay for robustness
certification.

It can be observed from (2) that there is a tradeoff on the
choice of the value of the noise level σ: a large σ permits
to get higher certified radii R, however, it also reduces the
confidence and affects the performance of gσ . Furthermore,
for the RS approach to be effective, it is necessary that the
base classifier performs well under noise addition, i.e., that
the samples (x + n) are classified correctly by f . Therefore,
in practice, it is recommended to train the base classifier f by
including noise addition as augmentation. For simplicity, the
same noise level is used in both the training of the base models
(for data augmentation) and the testing of the RS detector.

To the best of our knowledge, no previous work has
considered the application of RS to image forensic tasks,

and in particular to the task of synthetic image detection, to
certify the accuracy of AI-generated image detectors against
attacks. Notably, multimedia forensic tasks typically rely on
subtle traces that are highly sensitive to noise addition, thus
challenging the application of the RS approach in this scenario.

III. METHODOLOGY

In this section, we present the specific tasks and the archi-
tectures that we considered for the base detectors. The setting
and details of the implementation of RS detectors are also
reported.

A. Detection Tasks and Datasets

In our experiments, we focus on the detection of fake
face images generated with StyleGAN2 [10] and LD models
(LDMs) [11]. For both tasks, we collected a balanced dataset
of real and synthetic images. The real images are taken
from the CelebA-HQ [12] (70.000) and the Flickr-Faces-HQ
(FFHQ) [10] (30.000) datasets. StyleGAN2 and LD images are
generated by using the pre-trained models made available by
the authors in their repositories. The resolution of the images
generated with these models is 1024 × 1024 × 3 in the case
of StyleGAN2 and 256× 256× 3 in the case of LD. 80% of
the total number of images is used for training and validation,
while the remaining 20% is reserved for the tests.

B. Network Architectures

To build the base detectors, we considered two different
CNN architectures, fully-trained on the synthetic image detec-
tion task, and general-purpose features from pre-trained vision
language models. In particular, we considered the following:

Residual Networks (ResNet). ResNets rely on residual-based
learning, which mitigates the vanishing gradient problem and
enables training of very deep models [13]. In our experiments,
we used ResNet-101, balancing depth and computational effi-
ciency.

EfficientNet. In contrast with common CNNs that arbi-
trary scale width, depth, and input size, EfficientNet [14]
employs a compound scaling strategy to optimize them We
adopted EfficientNet-B4, which has demonstrated excellent
performance in related tasks [15], [16]

CLIP+FCN. Recent works have shown that cutting-edge
detectors can be developed using general-purpose features
obtained with pre-trained vision language models and CLIP
in particular [7], [8]. Following this literature we used the
CLIP ViT-L/14, using the ViT-L/14 transformer architecture
as image encoder. In this case, only the final fully connected
layer is trained on the synthetic image detection task.

C. Settings and Metrics

1) Data processing: for the training of the base detec-
tors, images are resized to the pre-defined input size. To
evaluate the impact of the pre-processing we also consider
a different pre-processing where instead of resizing the full
image a random crop is first extracted and resized to the
given size (using the RandomResizedCrop function from
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the torchvision.transforms package was used). Data
standardization is performed by subtracting the mean and di-
viding by the standard deviation. Gaussian noise with standard
deviation σ is added to the input with a probability of 0.5 as
data augmentation.

2) Training settings: the model is optimized using Stochas-
tic Gradient Descent (SGD) with a momentum of 0.9 and a
weight decay of 10−4. The initial learning rate is set to 0.01 for
EfficientNet and 0.001 for ResNet and CLIP. A learning rate
step-based decay schedule is considered, decreasing it every
30 epochs. Early stopping was employed by stopping training
when the validation loss did not improve for 20 epochs.

3) Implementation of RS detectors: For every test image,
N = 104 noisy versions are obtained by adding Gaussian
noise with standard deviation σ. These images are then pre-
processed and fed to the trained base models. The prediction
of the RS detector ĝσ at test time is then obtained as described
in Section in II. 1

4) Certification Metrics: for any test image xi the certi-
fied radius R(xi, σ) is computed. Following [4], the perfor-
mance of the RS detector are evaluated by measuring the
certified test accuracy CA at a given radius R∗, namely,
the fraction of test samples that are correctly classified by
the RS detector and have a certified radius larger than
R∗, and plotting the CA(R∗) curve. Formally, CA(R∗) =
# {xi|ĝσ(xi) = yi ∧R(xi, σ) ≥ R∗} /Nt, where Nt is the
total number of test images and yi is the ground truth label
of xi (0 = real, 1 = fake). Then, CA(0) measures the
accuracy of the RS detector. We evaluated the performance
on Nt = 2000 test images. For a given radius R∗, we can
compute the corresponding Mean Square Error (MSE) of the
attack that the model can withstand - i.e., the certified MSE -
as MSE = R∗2/d. Instead of plotting CA(R∗), we find it more
convenient to plot the CA(MSE), which also makes the curves
obtained for models with different input sizes comparable. As
a measure of the certification capability, we report the certified
MSE at selected values of CA.

IV. RESULTS AND DISCUSSIONS

In this section, we report the certification performance
achieved by the various trained models. We evaluated the
impact of the noise, input size and network architecture on
them, by focusing on the StyleGAN2 detection task. Then,
some results are reported for the case of LDM, where a
similar behavior is observed. Finally, the robustness of the RS
detectors against common processing operations is evaluated.

A. Impact of σ, input pre-processing and resolution

Fig. 1 shows the CA(MSE) curves obtained for StyleGAN2,
for the models trained with different values of σ, input size
224× 224× 3 and 1024× 1024× 3 (for σ = 1), considering
the resize (a) and random-crop and-resize (b) pre-processing,
when the ResNet-101 architecture is adopted. We see that, as σ
increases, the accuracy of the RS detector (CA(0)) decreases,

1Based on preliminary experiments we found that this number of samples
is sufficient in practice and results are similar using a larger N .

TABLE I: Certification performance of RS detectors
(MSE@CA), for the StyleGAN2 detection task (the resize pre-
processing is applied)

RS Detector MSE@0.8 MSE@0.85 MSE@0.9
ResNet 224 σ = 0.12 3.59e− 7 2.39e− 7 7.97e− 7
ResNet 224 σ = 0.25 1.06e− 6 4.58e− 7 3.99e− 8
ResNet 224 σ = 0.5 2.23e− 6 1.12e− 6 5.98e− 8
ResNet 224 σ = 1.0 3.03e− 6 8.77e− 7 0
ResNet 1024 σ = 1.0 2.44e− 6 2.0e− 6 1.44e− 6
ResNet 1024 σ = 4.6 1.38e− 5 5.96e− 6 1.11e− 6

EfficientNet 224 σ = 1.0 4.09e − 5 3.04e− 5 1.28e− 5

CLIP 224 σ = 1.0 9.37e− 7 0 0

however the curves become flatter and then larger distortions
can be certified.2 This is expected as the certified radius
increases linearly with σ (see (2)), even if σ also affects
the second term, with a too large σ impairing the detection
performance of the RS detector. By comparing Fig. 1a and
Fig. 1b we also see that the input pre-processing has some
impact on the certification performance, and results are better
in the resize case, with larger CA achieved for similar MSE
values Notably, higher CA can be obtained with larger input
sizes, resulting in larger MSE@CA values. In particular, in the
case of large input size, the RS detector with σ = 1 gets almost
perfect accuracy (CA(0) ≈ 1). Hence, we increased the noise
level to σ = 4.6 to improve the certification performance at
the cost of a reduction of accuracy, exploiting the fact that
higher-resolution images can tolerate stronger noise before
class-distinguishing content gets destroyed.3 Table I, rows 2-
7, reports the values of the certified MSE when CA is set to
0.80, 0.85 and 0.90 for the curves in Fig. 1a.

B. Impact of Model Architecture

In this section we compare the certification performance
achieved with different architectures. Fig. 3 shows the results
in the case of input size 224 × 224 × 3 and σ = 1.0
(the comparison is similar in different settings). The resize
is considered as pre-processing. We observe that the model
architecture has a significant impact on the performance, with
EfficientNet achieving the best results. We also see that the RS
detector based on CLIP has a pretty low detection accuracy
(CA(0) = 0.83). A possible reason for the poor performance
of the CLIP-based RS detector is that, in the CLIP case,
the embeddings are frozen and only the parameters of the
fully connected layer are updated during training. However,
arguably, CLIP extractor has been trained without taking into
account the presence of (strong) Gaussian noise in the input.
We also notice that the CA curve decreases slowly as the MSE
increases in the CLIP case with respect to the case of ResNet,
and there is a crossing point at MSE = 10−5, where CA is
0.7. Beyond this crossing point, the CA achieved with CLIP
is higher.

2The presence of the cut-off value of the MSE is a consequence of the
Monte Carlo simulations and of the fact that the support of the empirical
distribution of the noise samples is bounded [4].

3The value σ = 4.6 is chosen because, for large size images (1024×1024),
yields a similar σ/

√
d and hence a similar cut-off (see [4]).
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(a) Images Processed by Resize (b) Images Processed by Random Crop and Resize

Fig. 1: Certified Accuracy curves for the various RS detectors (StyleGAN2 task). The model architecture is ResNet101.

(a) Original (b) MeF (c) MF

(d) P&S (e) JPEG QF=10 (f) WebP QF=10

Fig. 2: Examples of post-processed images.

Fig. 3: Impact of model architecture on the certified accuracy
(StyleGAN2 detection). The setting is the following: input size
is 224× 224, σ = 1.0. The pre-processing is the resize.

The values of the certified MSE at selected CA achieved
with the three models are reported in Table I (lines 5, 8 and
9). Notably, when an EfficientNet is used to implement the RS
detector, an MSE on the order of 10−4/10−5 can be certified
with a target CA of 0.80.

C. Performance on LD detection

Fig. 4 shows the results we got for the RS detector trained
on the LD detection task, where we can observe a similar

Fig. 4: Certified Accuracy curves in the case of LD detection,
with different architectures and input sizes.

TABLE II: Accuracy of Baseline (Base.) and RS detector (RS)
on post-processed images.

Process ResNet CLIP EfficientNet
Base. RS Base. RS Base. RS

MeF 0.50 0.84 0.78 0.79 0.79 0.94
MF 0.50 0.75 0.81 0.78 0.86 0.89
P&S 0.64 0.84 0.89 0.80 0.74 0.96

behavior concerning the impact of the architecture and the
input resolution. The resize pre-processing is considered in all
cases. Specifically, by looking at the results with small size
images, we see that, also in this case, much better certified
robustness can be achieved using EfficientNetB4 as base model
to build the RS detector, even if the MSE that can be certified
is lower with respect to the StyleGAN2 case. In particular, with
EfficientNet we got MSE@0.8 = 1.05 × 10−5. As observed
before, also in this case, increasing the input size helps and
a larger MSE can be certified. We see that for ResNet the
MSE@0.8 passes from 0 in the setting 224 × 224, σ = 1 to
1.07× 10−5 in the setting 1024× 1024, σ = 4.6.

D. Robustness against post-processing

We also evaluated the robustness of the RS synthetic image
detectors to post-processing operations, considering medium-
to-strong processing strengths. In particular, we considered
JPEG compression, WebP compression, median filtering (MeF,
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Fig. 5: Accuracy of Baseline (Base.) and RS detector (RS) on
compressed images.

kernel size 7× 7), mean filtering (MF, kernel size 7× 7), and
the print and scan operation (P&S), which affects colors and
geometry, simulated using the network in [17]. The MSE intro-
duced by the various processings is in the range [10−3, 10−1].
For these experiments we focus on the StyleGAN2 detection
task, in the setting with input size 224 × 224, σ = 1. Fig.
2 shows an example of an image processed with the various
post-processing operations.

The accuracy of the RS detectors on post-processed images
is reported in Table II and Fig. 5, where it is compared to that
achieved by the baseline detectors using the same architecture
(that is, trained in the same way of the base models but without
the addition of the noise). We see that, especially in the Effi-
cientNet case, the RS detector gets strong robustness against
all the types of processing. In particular, a strong robustness
against compression, both JPEG and WebP, is achieved by
the model, which remains effective also when the images are
strongly compressed (QF = 10). We also notice that the limited
robustness performance of the CLIP-based RS detector are
a consequence of the pretty low detection accuracy of this
detector (see discussion in Section IV-B). The baseline CLIP
model already exhibits a certain degree of robustness which is
a consequence of the inherent robustness of CLIP features.
It is worth pointing out that, in most cases, the distortion
introduced by the post-processing is larger/much larger than
the distortion that the RS detector can provably withstand, i.e.,
the certified MSE. This means that the robustness of the RS
detectors remains good also when the distortion significantly
exceeds the certified value, although, in principle, with such an
amount of distortion, the model can be fooled with a different
processing or attack.

V. CONCLUSIONS

In this paper, we propose to exploit the RS approach to
build synthetic image detectors with certified robustness. Our
experiments reveal that the input pre-processing, the input size
and, above all, the network architecture adopted to implement
the RS detector play a significant role. In particular, a high
degree of certification can be achieved using an Efficient-
NetB4 base detector, with a certified MSE on the order of
10−4/10−5 for a target detection accuracy of 0.8 in the case
of Style-GAN2 detection. Future works will focus on further

investigating the impact of the input size and resolution, and
trying to improve the performance in the case of CLIP, e.g., by
exploiting unsupervised learning to modify the embeddings.
Evaluating the practical robustness of the RS detectors by
attacking them with adversarial attacks is also an interesting
direction of research.
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