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Abstract—Identity documents (IDs) verify a person’s identity in
various applications such as banking, travel, and border control. Systems
used for verifying ID cards can be attacked using different attack
mediums (e.g., printed ID, screen displays) and thus need to be equipped
with presentation attack detection (PAD) systems. Developing better PAD
schemes is often limited by the availability of datasets. To address the
shortage of relevant datasets for training PAD systems, we introduce
DASAC (Document Authentication and Synthetic Attack Collection)1.
The dataset includes synthetic ID card data generated using Uncondi-
tional Latent Diffusion (ULD), referred to as DASAC-ULD generated.
Additionally, it features a subset created through carefully designed
template transfer techniques, known as DASAC-Crafted Template. We
further present a dual-stage architecture based PAD scheme developed
using EfficientNet-Transformer network to detect diverse presentation
attacks. Further, leveraging mixup data augmentation to enhance model
robustness, the proposed approach achieves an Equal Error Rate (EER)
of 3.14% with a Bona Fide Presentation Classification Error Rate
(BPCER) of 2.42% and 1.33% at Attack Presentation Classification
Error Rates (APCER) of 5% and 10%, respectively. Additional ablation
studies, has been uploaded to the GitHub link 2.

Index Terms—ID Cards, Presentation Attack Detection, Biometrics.

I. INTRODUCTION

Biometric access control systems are widely deployed in critical
infrastructure (e.g., border security, financial institutions) and rely
on International Civil Aviation Organization (ICAO)-compliant
documents like passports and ID cards. The COVID-19 pandemic
accelerated demand for remote authentication, driving advancements
in digital document verification [1, 2]. However, ID card verification
systems remain vulnerable to presentation attacks (PAs) conducted
with physical counterfeits (e.g., variable-quality printed forgeries)
and digital attacks (e.g., high-resolution screen replays) [3, 4].

ICAO-compliant NFC-enabled documents offer intrinsic
Presentation Attack Detection (PAD) capabilities, however, their
wide-spread adoption is constrained by infrastructure costs [5]. Thus,
non-NFC ID card verification systems need integrated PAD, and
PAD methods have been proposed leveraging texture analysis, pattern
recognition, and machine learning—are essential for detecting material
anomalies in forged credentials [4, 6, 7]. Techniques are further
devised to detect both print-based and digital attacks, emphasizing
robustness against evolving spoofing technologies [8]. In the following
section, we review recent research on PAD methods through a
taxonomy that classifies attacks into physical counterfeits (e.g.,
printed forgeries) and digital forgeries (e.g., screen replays, synthetic
manipulations), contextualizing their detection methodologies.

Recent advances in ID card PAD techniques consider diverse
methodologies and datasets. Gonzalez et al. proposed two key
approaches: (1) a face quality assessment framework using MagFace

1Dataset is available upon request for research purposes only. Access to dataset
is subject to agreement on terms of use that ensure the data is used exclusively for
non-commercial research activities.

2https://github.com/Raghavendra-MG/EUSIPCO Supplementary Paper

[9] on Chilean ID cards (74,939 images), where low-quality face
regions indicate attacks [4], and (2) a dual-stage MobileNetV2 archi-
tecture distinguishing bona fide documents from composite/synthetic
forgeries (Stage 1) and fine-grained attack types (Stage 2), achieving
a BPCER100 of 92% on a 190,000-image dataset [8]. Kiselev et
al. [10] introduced a compact dataset of 500 video clips featuring
50 different types of identity documents, marking one of the earliest
publicly available resources for identity document analysis and
recognition in video streams. Their work established baselines for face
detection accuracy, Optical Character Recognition precision across
four primary document fields, and data extraction from video streams.

Mudgalgundurao et al. [7] proposed a pixel-wise supervision
for PAD model where German ID cards were used to detect the
attacks. Although achieving an EER of 2.2%, the approach was
aimed at localizing printer artifacts and moiré patterns from screens
to detect attacks. However, the approach was tested on an in-house
dataset, making it difficult for other researchers to develop new PAD
models. In a similar direction, Kunina et al. [11] focused only on
screen attack detection in documents, noting that moiré patterns
predominantly appear on document edges. Their approach, utilizing
Hough transforms for pattern detection, achieved 95.4% precision on
the DLC-2021 dataset of simulated documents and screen captures.

Despite those advancements, existing research is constrained by
limited data diversity, often focusing on single-type documents and
synthetic IDs. Thus, we introduce a synthetic ID card dataset generated
via an Unconditional Latent Diffusion (ULD) model, which eliminates
external conditioning inputs, reducing computational complexity and
noise [12] while capturing essential security features. Making use
of this dataset, we propose a two-stage PAD architecture where
EfficientNet-B4 [13] in the first stage extracts features, capturing fine-
grained variations across different ID card instances. A transformer-
based second stage [14] leverages self-attention mechanisms to model
long-range dependencies and contextual relationships within ID card
embeddings. To enhance robustness, we incorporate mixup augmen-
tation [15] for diverse training data, addressing common attack types
such as replay, print, crafted template transfer, and synthetic ID card
attacks. Specifically, our contributions to this work can be listed below:

• Synthetic ID Card Dataset: We generate 15,000 synthetic attack
images via ULD and an additional 1,340 Crafted Template
Transfer images by modifying existing ID cards and passports
while retaining security features like holograms. Our dataset
covers ULD-generated IDs, Crafted Template Attacks (CTA),
Texture Transfer Attacks (TTA), and Screen & Print Attacks.

• Novel Two-Stage PAD Architecture: Unlike prior works limited
to a single ID type, our approach supports diverse IDs (e.g.,
driving licenses, passports, and entry cards), leveraging mixup
augmentation for enhanced attack detection across different
scenarios.
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Fig. 1: Example images from our DASAC dataset include bona fide, print, replay attack, diffusion, and crafted texture transfer types.
Database Bona fide Screen Print Synthetic Size (images) Attack Types Synthetic Data Augmentation Availability
Chilean ID Cards[3] 6,588 24,778 6,972 - 38,338 Screen, Print No Limited Restricted
MIDV-500*[10] 15,000 - - - 15,000 + 500 videos None No None Public
KID34K[16] 13,746 13,729 7,187 - 34,662 Screen, Print No Limited Public
DASAC-ULD Generated (Ours) - - - 15,000 15,000 Synthetic Yes (15K ULD) Extensive Research use (Non-commercial)
DASAC-Crafted Template (Ours) - - - 1,340 1,340 Synthetic Yes (1.3K Template) Extensive Research use (Non-commercial)
DASAC-Texture Transfer (Ours) - 2,221 2,226 - 4,447 Screen, Print No Extensive Research use (Non-commercial)
DASAC-Screen Attack (Ours) - 65,023 - - 65,023 Screen No Extensive Research use (Non-commercial)
DASAC-Print Attack (Ours) - - 65,023 - 65,023 Print No Extensive Research use (Non-commercial)

TABLE I: Summary of major ID document datasets including class distributions, attack types, and key dataset characteristics. *MIDV also
includes 500 videos of ID cards.

Database Bona fide Replay Screen Synthetic

Train Validation Test Train Validation Test Train Validation Test Train Validation Test
MIDV-500[10] 55667 7783 16323 26392 6298 13365 26392 6298 13365 - - -
KID34K[16] 11342 862 1539 4208 382 692 2543 864 1463 - - -
DASAC- ULD Generated (Ours) - - - - - - - - - 10500 1500 3000
DASAC- Crafted Template (Ours) - - - - - - - - - 938 134 268

TABLE II: Breakdown of the dataset samples to training, validation, and testing sets.

• Comprehensive Evaluation: We benchmark our models against
State-of-the-Art (SOTA) approaches on our new dataset and
conduct targeted ablation studies to analyze strengths and
limitations, offering insights for advancing PAD research.

In the rest of the paper, we first present the newly created ID
card attack database in Section II along with a detailed rationale
for our proposed approach in Section III. We present different
baseline evaluations along with proposed approach in Section IV, and
demonstrate the applicability of the proposed approach in detecting the
attacks effectively. We provide a discussion on the conducted ablation
studies in Section V. We further present the limitations of our work in
Section VI, and Section VII presents the conclusion and future work.

II. DOCUMENT AUTHENTICATION
AND SYNTHETIC ATTACK COLLECTION (DASAC) DATABASE

Due to the sensitive nature of ID card data, open-source datasets for
research remain scarce. Among the limited resources, MIDV-500 [10]
offers 500 video clips from 50 unique identity documents, including
17 ID cards, 14 passports, 13 driving licenses, and 6 miscellaneous
documents, with high-resolution (4032×3024) image settings were
captured, featuring various individuals under different lighting and
background conditions. KID34K [16] addresses forgery detection with
34,662 images of 82 replica ID cards (46 falsified identities), subdi-
vided into 13,746 bona fide samples, 13,729 screen-displayed attacks,
and 7,187 printed copies, acquired under realistic conditions using 12
smartphones and diverse digital devices (tablets, monitors). Similarly,
the Chilean ID Cards dataset [3] provides 6,588 bona fide images cap-
tured at 1280 × 720 resolution using Samsung S6/S8 and iPhone 11
Pro devices, alongside 24,778 screen-based attacks (displayed on Acer
Aspire Nitro 5 and HP 22w monitors) and 6,972 print-based attacks

Fig. 2: A graphical representation of our trained ULD network, which
inputs a cropped ID and generates synthesized ID cards.

generated via an Epson L4160 printer on regular and glossy paper.
Table I comprehensively summarizes existing and contributed datasets.

A. Our dataset - DASAC

To address the scarcity of public datasets, we developed a new ID
card dataset using ULD, where we make use of MIDV-500 [10] and
KID34K [16] datasets. Our pipeline utilizes the open-source ID card
detection by Steidle [17] to extract ID cards from MIDV-500 video
frames. These high-resolution ID card frames were then manually
curated to ensure data quality by discarding images that included
background noise. The curated dataset is used to create different at-
tacks that include crafted template attacks (Sec II-A2), texture transfer
attacks (Sec II-A3), and screen/print attacks (Sec II-A4). In the below
section, we outline each step involved in generating synthetic ID cards.
Example images from our DASAC dataset are shown in Figure 1.

1) Generating Images from Unconditional Latent Diffusion Model:
The ULD performs a diffusion process in a compressed latent space
to synthesize high-fidelity ID card images. The model architecture
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Fig. 3: The input is an ID card image that passes through an EfficientNet-B4 model to extract embeddings. These embeddings are then
fed into a transformer network. The transformer uses multiple layers of attention mechanisms and feed-forward networks to process the
embeddings efficiently. We visualize the embeddings from the EfficientNet-B4 network and their transformed counterparts after training
the transformer network using t-distributed stochastic neighbor embedding (t-SNE) representation.

integrates a 2D UNet [18] to reverse the diffusion process from
Denoising Diffusion Probabilistic Models (DDPM) [19], as illustrated
in Figure 2. Our implementation utilizes pre-trained weights from
[20] and incorporates a frozen Variational Autoencoder (VAE) [21]
to encode high-dimensional images into a lower-dimensional latent
space, optimizing computational efficiency.

For training, we utilized the curated dataset described earlier,
ensuring high-quality ID card images for generating synthetic samples
using the Unconditional Latent Diffusion Model. The training
pipeline employs a DDPMScheduler [22] for noise management
during forward diffusion and inference, while an AdamW optimizer
minimizes the loss between predicted and actual noise in the latent
representations. We use an Exponential Moving Average (EMA) to
stabilize training via temporal weight averaging, promoting consistent
gradients and convergence.

2) Crafted Template Attacks: To enhance the dataset diversity
with realistic examples, we create Crafted Template Attacks (CTA)
making use of 15 different templates available in MIDV-500 dataset
(passport and ID cards). Each of the different type of ID card is used
to create a blank template by removing all the details, such as face
image and demographic details using GIMP3 in a careful manner. We
generate a new subset of attacks, with random demographic details
such as name, date of birth, ID number, and validity dates and added
face images from CelebA dataset yielding 1,340 attack ID cards.

3) Texture Transfer Attacks: We apply screen and print attack
textures from texture transfer method of Benalcázar et al [6] to
bona fide samples sourced from MIDV-500 and KID34K datasets.
Through this methodology, we generated a comprehensive dataset of
4,454 ID card images that simulate print and replay attacks, thereby
expanding the robustness of our attack detection approach.

4) Screen and Print Attacks: Screen attacks are captured by
displaying ID cards from MIDV-500 and KID34K datasets on a
Samsung LU32J509 LED monitor, recorded using Samsung Galaxy
S20 (3840×2160) and Note 20 Ultra (1920×1080) under varied
lighting/quality settings. Print attacks involve grayscale/color ID
cards printed with a Canon TS-5000, captured using the same
smartphones at 1920×1080 resolution. This ensures diverse attack
types (screen/print) and capture conditions for robust PAD evaluation.

III. PROPOSED APPROACH FOR PAD

Our proposed PAD framework, as illustrated in Figure 3 enhances
attack detection through three key components: mixup data

3https://www.gimp.org

augmentation [15] to improve data diversity of the training data,
EfficientNet-B4 [13] for extracting fine-grained features from ID
cards, and a transformer architecture [14] that exploits the contextual
relationships between the features through self-attention mechanisms
to detect the attacks.

A. Mixup Augmentation: Class-Specific Implementation

Mixup augmentation [15] generates synthetic training examples
by linearly interpolating data points and their corresponding labels.
We create class-specific augmentation to generate massive training
data. We make use of both label-based mixup and data-based mixup
to make the training of PAD more robust. By providing such diverse
augmented data for bona fide and attack classes, we aim to enhance
the model’s discriminative capability and generalization to different
kinds of ID cards. Given input images x and corresponding labels
y∈0,1 (where 0 represents bona fide and 1 represents attack samples),
the mixing process is controlled by α which is parameterized in a β
distribution. The interpolation strength between samples is controlled
by λ ∈ [0,1] drawn from the β distribution, where a symmetric
distribution ensures balanced interpolation between classes.
Sample Generation: For each bona fide sample xb[i] with label yb[i],
a randomly selected attack sample xa[i] with label ya[i] is mixed
using the following equation:

fsamples[i]=λ·xb[i]+(1−λ)·xa[i] (1)
The corresponding label mixing is as follows:

flabels[i]=λ·yb[i]+(1−λ)·ya[i] (2)
During training, these mixed samples are incorporated using a
modified loss function:

Lmixup=λL(F(fsamples),flabels) (3)
where L represents the base loss function and F(·) denotes the
model’s predictions.

Our class-specific mixup implementation synthesizes samples
along the bona fide and attacks using λ ∼ β(α,α). When α = 1,
λ follows a uniform distribution, ensuring unbiased interpolation
between classes. For α< 1, the β distribution becomes U-shaped,
favoring extreme λ values (e.g., λ≈0.05 or 0.95), which generates
samples strongly weighted toward one class while preserving subtle
features of the other. As α decreases further, this polarization effect
intensifies, enhancing the model’s ability to detect subtle adversarial
artifacts while maintaining robustness through controlled feature
interpolation. By setting the λ∼β(α,α) equals the number of bona
fide samples in a batch, the symmetric β distribution ensures balanced
interpolation between classes in our work.
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BPCER @
Approach EER% APCER=5% APCER=10%
Gonzalez[4] 7.61 10.41 5.95
PixelWise Model[7] 21.02 56.13 36.35
Gonzalez and Tapia[8] 23.46 70.42 47.59

With Mixup Strategy
Efficientnet-B4 (α=0.2) 7.09 12.97 3.51
MobileNet V2 (α=0.2) 4.89 4.81 3.37
MobileNetV3-Large (α=0.2) 7.74 9.84 6.64
ViT (α=0.2) 21.68 56.11 38.98
Proposed (α=0.2) 3.14 2.42 1.33

Cross-Database Evaluation on IDNet using our Proposed model [23]
Screen and Print 14.75 17.82 16.15
Copy-Move 53.60 97.83 94.55
Crop-Replace 58.79 99.35 98.44
Face Morphing 50.53 95.02 90.57
Inpaint-Rewrite 58.59 99.31 98.09
Face Replacement 50.58 94.11 88.79

TABLE III: Comparison of the proposed approach against baseline
and state-of-the-art (SOTA) models. The SOTA models were evaluated
without the mixup strategy and are presented as benchmarks.

Fig. 4: DET plots for baseline and proposed methods.

B. Feature Refining for Enhanced PAD

Our PAD framework leverages a pre-trained EfficientNet-B4 [13]
as a parameter-efficient backbone to extract generic features, which
are then task-adapted via a transformer encoder. The transformer
refines features through self-attention mechanisms, modeling
discriminative bona fide vs attack feature relationships. By combining
EfficientNet’s discriminative local features with the transformer’s
global contextual modeling [14], our approach robustly captures
fine-grained attack patterns critical for PAD, as shown in Figure 3.

C. Implementation Details

Input images are resized to 380×380 and processed by a
pre-trained EfficientNet-B4 to extract 1792-D features, projected to
512-D via a linear layer. A three-layer transformer encoder employs:
(i) 8-head multi-head self-attention, (ii) 2048-D feed forward network,
and (iii) dropout (0.2). Classification uses a softmax-activated fully
connected layer. Training employs Adam optimizer (lr = 10−4)
with beta parameters annealed from (0.9,0.999) to (0.1,0.1) every
30 epochs. The ReduceLROnPlateau scheduler (factor = 0.1, patience
= 10) stabilizes the training.

IV. EXPERIMENTS

In this section, we present the results of selected baselines,
evaluation metrics, and experimental results used to assess PAD
performance. We compare our approach against three different
PAD schemes for ID (Gonzalez [4], PixelWise Model [7], and
Gonzalez and Tapia’s [8]) and different deep learning models, such
as MobileNet V2, MobileNetV3-Large, EfficientNetB4, and Vision
Transformer. We evaluate all methods using standardized metrics
from the ISO/IEC 30107-3:2017 [24] guidelines for PAD, including
APCER, BPCER, and EER. We make the dataset disjoint for training,
validation, and testing setup, with data split into 70% for training,
10% for validation, and 20% for testing as indicated in Table II.

A. Results and Discussion

The results presented in Table III compare the performance of
various approaches using EER and BPCER at APCER = 5%, and
APCER = 10%, and in Figure 4, the Detection Error Tradeoff (DET)

curve is presented. To systematize the comparison, we focus on
BPCER@APCER=5%, which reflects the ability of each experiment
to correctly accept bona fide samples while controlling the false
acceptance rate at a reasonable threshold.

Among the baseline methods, Gonzalez [4] method achieves
the lowest BPCER of 10.41%, whereas the PixelWise Model [7]
and Gonzalez and Tapia’s [8] show higher BPCERs of 56.13%
and 70.42% respectively, indicating poor robustness to presentation
attacks. The proposed PAD model, trained with mixup α = 0.2,
outperforms all others, achieving a BPCER of 2.42%, showcasing its
effectiveness in distinguishing between bona fide and attack samples.
MobileNet V2 also uses mixup at the same α, achieves a BPCER
of 4.81%, outperforming several baseline models, but performs lower
than the proposed PAD model.

The proposed PAD model, trained with mixup α = 0.2 outperforms
all others, achieving a BPCER of 2.42%, demonstrating its
effectiveness in distinguishing between attack and bona fide samples.
MobileNet V2, also using mixup at the same α, follows with a
BPCER of 4.81%, outperforming many baselines but not matching
the proposed method. EfficientNet-B4 and MobileNetV3-Large also
improve over SOTA methods but show elevated BPCERs compared
to our approach. Interestingly, Vision Transformer (ViT) performs
poorly in this setting with a BPCER of 56.11%. Furthermore, we
observe that while the proposed model remains effective at higher
α values (e.g., 0.5 and 1.0), α=0.2 offers the best tradeoff between
robustness and generalization. 4

In parallel work, the PAD-IDCard 2024 competition [25]
established a standardized benchmark for ID card presentation attack
detection using a sequestered dataset containing genuine and attack
samples from four countries. The top-performing team achieved
a 74.30% average rank with BPCER values frequently exceeding
40% at APCER=10%, while the MobileVIT baseline trained on
private data achieved 1.84% BPCER. Despite the different test
methodologies that preclude direct comparison, these results show
that DASAC is a good approach to training robust PAD models.

4For a complete comparison of all the alpha values, please refer to Table STIII
provided in the supplementary material.

828



BPCER @
Approach EER% APCER=5% APCER=10%
Proposed (α=0.2) 3.14 2.42 1.33
Reduced Transformer Depth 24.58 45.76 37.85
Increased Attention Heads 20.19 85.74 62.42
Reduced Feed-Forward Dimensionality 22.91 81.72 62.22

TABLE IV: Results from ablation studies to demonstrate the impact
of varying model parameter configurations.

V. ABLATION STUDIES

To analyze the impact of various components on the performance
of the proposed PAD model, we conduct an extensive ablation
study. We study the impact of transformer depth, role of attention
mechanism, and the feed-forward capacity as illustrated in Table IV.
We further study the impact of the rate of mixup by varying the α
coefficient as provided in the supplementary material (Table STIII)
due to page constraints.
Transformer Depth: Reducing the number of transformer layers
degrades the model’s performance, as shown in Table IV, suggesting
the role of depth in capturing complex patterns in ID card features.
Attention Mechanism: Increasing the number of attention heads from
8 to 16 in an attempt to potentially capture more intricate relations
in the image. However, this results in no improvement in PAD.
Feed-Forward Network Capacity: We also investigate the effect of
reducing the dimensionality of the feed-forward network within each
transformer layer from 2048 to 1024. The reduction in feed-forward
capacity results in degraded PAD performance, indicating the role
of larger dimensions.
Attack-Specific Analysis We evaluate the model’s effectiveness across
different attack types by comparing each attack type against bona
fide samples. Results detailed in supplementary material in Tables
ST4–ST6 show that our model performs particularly well in detecting
ID cards generated using diffusion while also maintaining high
detection rates for print and screen attacks.
Class Activation Map Analysis We further study the Class Activation
Maps (CAM), the visualization provided in the supplementary mate-
rial (Figure SF7 - SF24) indicates which regions drive the classification
as either bona fide or attacks. These visualizations aid in interpreting
the model’s focus and validating its decision-making process.

VI. LIMITATIONS OF OUR WORK

While our proposed method demonstrates promising results, it
has limitations. First, privacy constraints limit bona fide ID data,
causing class imbalance, favouring attack samples. Second, synthetic
data generation (ULD) improves diversity but cannot fully replicate
intricate security features, which may reduce the detection of
advanced forgeries. Third, despite data augmentation, performance
may decline under real-world conditions such as harsh lighting and
motion blur. Addressing data scarcity, improving synthetic fidelity,
and environmental robustness remains critical for future work.

VII. CONCLUSION AND FUTURE DIRECTIONS

Verifying ID cards in unsupervised settings remains challenging
due to prevalent presentation attacks involving digital or photocopied
IDs. To tackle this, we introduced a synthetic ID card dataset
generated via ULD, and complemented it with crafted template
transfer attacks, print and replay attacks. This dataset will be
made available for non-commercial research to help advance the
presentation attack detection techniques.

Further, we have presented a new PAD framework that utilizes
the strengths of two different architectures in a cascaded manner
to detect various attacks on ID cards. Using mixup strategy, the
model effectively learns subtle distinctions between bona fide and
attack samples. Our proposed approach demonstrates better PAD
performance with a BPCER of 2.42%, and 1.33% at APCER of 5%
and 10%, respectively. Future work can be extended to simulate attacks
under varies captured conditions - such as reflections, rotations, and
background noise. Additionally, alternative methods for combining
complementary architectures could further improve robustness.
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