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Abstract—Distributed consensus algorithms face a dual chal-
lenge in modern networked systems: safeguarding sensitive data
through privacy-preserving mechanisms while maintaining ro-
bustness against adversarial nodes (e.g., Byzantine faults). While
prior work addresses these goals separately, their interplay re-
mains poorly understood, particularly in scenarios where output
accuracy must be preserved. In this work, we reconcile these ob-
jectives by integrating a subspace perturbation framework, which
guarantees privacy by confining noise to redundant network
subspaces, with a median absolute deviation (MAD)-based thresh-
olding mechanism to detect active adversarial nodes transmitting
corrupted data. Through in-depth analysis, we demonstrate that
enhancing privacy via subspace perturbation inherently limits
the discriminative power of MAD-based detection, as adversar-
ial updates become statistically indistinguishable from privacy-
preserving perturbations. Numerical simulations quantify this
tension, demonstrating that as privacy guarantees strengthen,
the ability to detect active adversaries diminishes. These findings
highlight a core challenge in distributed consensus—achieving
both strong privacy and Byzantine robustness simultaneously is
inherently difficult.

Index Terms—Primal-dual method of multipliers (PDMM),
privacy, subspace perturbation, adversary, detection, median
absolute deviation (MAD), privacy-robustness trade-off

I. INTRODUCTION

In recent years, a rising trend is gaining traction which aims
to develop a wide range of techniques to perform distributed
computations [1]. These techniques enable collaborative data
processing across decentralised nodes without a centralised co-
ordinator. For example, this can be seen in applications ranging
from wireless sensor networks [2], optimisation [3], and feder-
ated learning [4]. Distributed optimisation algorithms such as
the alternating direction method of multipliers (ADMM) [5]
and the primal-dual method of multipliers (PDMM) [6]–[8]
have gained popularity in distributed frameworks. As these
algorithms are applied across more fields, they increasingly
handle sensitive data, making privacy protection vital [9].
Traditional approaches, such as differential privacy (DP) [10],
[11] and secure multiparty computation (SMPC) [12], aim to
address these concerns by protecting sensitive data but often
do so at the cost of accuracy or increased computational
complexity [13], [14]. To overcome these limitations, new
methods have been developed that maintain both accuracy and
computational efficiency. One such approach is the subspace
perturbation framework introduced in [15]–[17] and its vari-
ants [18]–[20].

Privacy is not the only concern in decentralised networks.
In addition to data being extracted from the network, corrupt
data can also be injected into a distributed system [21]. Various
types of attacks can introduce corrupt data, such as backdoor
attacks in a federated learning environment [22], [23]. Addi-
tionally, attacks can be designed to prevent the network from
converging to the optimal value. This can be achieved, for
example, through random Gaussian attacks [21] or by trans-
mitting malicious data to poison the network [24]. To counter
these attacks, various robust detection algorithms have been
developed, such as the Krum algorithm [25]. Here, the node
calculates the proximity of its neighbours and the similarity of
their transmitted data. It then selects the node with the smallest
distance to the others as the true update. Another method,
called Kardam [26], computes the Lipschitz coefficients of
its neighbours and accepts data from those neighbours whose
values fall within an acceptable range around the median of
the Lipschitz coefficients. Another approach, proposed in [27],
detects corrupt nodes by calculating at every time instant the
normalised difference of transmitted data among neighbours
and determining the maximum deviation from the median.
Neighbours of which the averaged distance to the median
exceeds a certain threshold are identified as being malicious.
When implementing a decentralised network, both privacy and
adversarial robustness must be considered. In a distributed
network, the optimal solution can be achieved when the ap-
propriate algorithm is used and all nodes share the same goal.
However, in the presence of an attack, the network may diverge
from its optimal output if robust detection algorithms are not
in place. Detection algorithms evaluate and distinguish nodes
based on the data they transmit. By comparing individual data
updates to the collective behaviour of neighbouring nodes,
adversarial nodes can be identified and flagged. However, if
the network achieves perfect secrecy, nodes may become indis-
tinguishable from one another, undermining the fundamental
principle on which detection algorithms assess corruption.

In this paper, we investigate a fundamental trade-off
between privacy preservation and adversarial detection in
distributed average consensus algorithms. Specifically, we
demonstrate that integrating both privacy-protecting mecha-
nisms and attack detection capabilities creates an inherent
conflict: enhancing privacy preservation (e.g., through noise
injection) can inadvertently diminish the system’s ability to
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identify malicious or compromised nodes. Our analysis reveals
that as the level of privacy preservation increases, the detec-
tion accuracy for adversarial behaviour declines accordingly,
highlighting a critical design challenge for secure and privacy-
aware consensus frameworks. We further consolidate these
findings through numerical simulations, which quantify the
trade-off and validate our theoretical claims.

The paper is organised as follows. In Section II, we define
the privacy preservation methods used and describe the ad-
versarial models. Section III presents the problem setup, the
network attack model, and the metrics used to demonstrate
the privacy-robustness trade-off. In Section IV, we introduce
the proposed detection algorithm for active adversarial nodes.
Section V provides numerical validation of our findings, and
finally, Section VI presents our conclusions.

II. PRELIMINARIES

We present a simple undirected connected graph G as G =
(V, E), where the set of nodes in the network is represented
by V = {1, 2, . . . , n} and the set of edges is represented by
E = {e1, . . . , em} ⊆ V × V . The neighbourhood of node i is
denoted as the set Ni = {j ∈ V | (i, j) ∈ E}. The degree
of node i is then given by di = |Ni|. The distributed average
consensus algorithm aims to calculate the average of the local
data each node holds

save =
1

n

∑
i∈V

si (1)

where si ∈ Rq is the local data each node holds and q the
dimension of the local data.

A. A/PDMM approach of solving average consensus

The solution to (1) can be achieved in a distributed network
by implementing PDMM and reformulating the overall setup
problem as follows:

min
{xi:i∈V}

∑
i∈V

fi(xi) (2)

subject to ∀(i, j) ∈ E : Bi|jxi +Bj|ixj = 0,

where fi(xi) = 1
2 ||xi − si||22 and Bi|j ∈ Rq×q is defined

as Bi|j = Iq if i < j, and Bi|j = −Iq otherwise, where Iq
denotes the q × q identity matrix. As shown in [28], problem
(2) can be solved using A/PDMM. This leads to the following
set of update equations for each node:

x
(t+1)
i = argmin

xi

fi(xi) +
∑
j∈Ni

z
(t)⊤
i|j Bi|jxi +

ρdi
2

∥xi∥2
 ,

(∀j ∈ Ni) y
(t+1)
i|j = z

(t)
i|j + 2ρBi|jx

(t+1)
i , (3)

(∀j ∈ Ni) z
(t+1)
j|i = (1− θ)z

(t)
j|i + θy

(t+1)
i|j , (4)

where θ is the averaging parameter and ρ controls the con-
vergence rate. For θ = 1

2 (Douglas-Rachford splitting), 1
2 -

averaged PDMM is achieved, which is equivalent to the
classical ADMM algorithm [28].

B. Privacy

There are various privacy-preserving distributed average
consensus algorithms proposed, such as DP-based [29]–[31],
SMPC based [32]–[34] and subspace-perturbation based ap-
proaches [15]–[17]. In this paper, we deploy subspace per-
turbation to achieve privacy preservation, motivated by its
efficiency and flexibility; it has been shown to achieve similar
privacy guarantees to SMPC and DP-based approaches under
specific parameter configurations [20]. The implementation of
subspace perturbation is straightforward: it involves sampling
the initialised auxiliary variable z(0) ∈ Rmq from a high-
variance noise distribution to protect local node data through
statistical obfuscation. This is achieved by splitting the space
into two subspaces, the convergent subspace and the non-
convergent subspace. Privacy is imposed by perturbing the
non-convergent subspace with noise, while perturbations in the
non-convergent subspace do not affect the output accuracy. As
shown in [17], perfect secrecy can asymptotically be achieved
this way, by introducing finite variance in the noise in the
non-convergent subspace of the auxiliary variable z(0).

C. Adversarial models

In this work, we consider three types of nodes that can exist
within the network. The first type is the honest node, which
follows the averaging process as intended and does not attempt
to infer the local data of other nodes. The other two types
are adversarial nodes: passive adversarial nodes (also known
as honest-but-curious) and active adversarial nodes. Passive
adversarial nodes follow the protocol’s instructions similar to
honest nodes but attempt to infer as much information as
possible, in collaboration with other passive adversarial nodes,
about the local data si of the honest nodes. In contrast, active
adversarial nodes seek to disrupt the network by transmitting
arbitrary updates based on their malicious intentions, which
could cause the network to diverge or converge to a malicious
point.

Let Vh denote the set of honest nodes and Vc the set of
adversarial nodes such that V = Vh ∪ Vc and Vh ∩ Vc = ∅. In
addition, let Vc,p denote the set of passive adversarial nodes
and Vc,a the set of active adversarial nodes so that Vc = Vc,p∪
Vc,a and Vc,p ∩ Vc,a = ∅.

III. PROBLEM DEFINITION

The local data utilised in private distributed networks for
which PDMM can be applied to, should not be revealed to
outsiders or adversarial nodes. To solve this issue, one must
implement privacy-preserving frameworks in their network.
The works in [17] [20] [15] have shown that it is possible
to implement such a framework in PDMM and to achieve
perfect secrecy, without sacrificing the output correctness of
the network. However, our findings in this work show there
is another trade-off which occurs when perfect secrecy is
achieved. We found that higher levels of privacy in a network
for the private local data of its nodes come at the expense
of detecting adversarial nodes that corrupt their local data
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with malicious intent. This trade-off highlights the difficulty
in balancing between privacy and adversarial node detection.

A. Active adversarial attack

An adversarial model can utilise multiple different attacks
to reach its goal [35]. However, in this work, we will only
focus on a single attack, in which the adversarial node corrupts
its local data to make the network converge to a non-optimal
point.

B. Trade-off metrics

To discuss the trade-off between the effectiveness of
privacy-preserving techniques and adversarial detection meth-
ods, four metrics will be compared.

a) Information-theoretical privacy metric: measures the
mutual information between the private data and all infor-
mation available to the adversary. Let O denote the set of
information obtained by the adversary and Xi the private data
of node i. The mutual information I(Xi;O) is given by

I(Xi;O) = H(Xi)−H(Xi|O) ≤ H(Xi), (5)

where H(·) denotes the (Shannon) entropy. If I(Xi;O) = 0,
the adversary cannot gain any information about the private
data by observing O. If I(Xi;O) = H(Xi), the adversary
has complete knowledge about the private data. Thus, higher
mutual information indicates greater potential privacy leakage.

b) Output correctness: measures the distance of the
output of the network to the optimal solution. This is assessed
by taking the mean square error (MSE) between the xi-values
and the optimal solution x∗, given by 1

n ||x
(t)
i − x∗||2.

c) False alarm rate (FAR): measures whether nodes im-
plementing the detection algorithm are misclassifying honest
nodes as active adversarial nodes. Let D(i, j) denote the
number of times a node has been identified of being malicious
within a time frame of L samples. The FAR is defined
as FAR(k) = 1

|EH |
∑

(i,j)∈EH
I(D(i, j)(kL) > L

2 ), where
EH ⊆ (V \ Vc,a) × (V \ Vc,a), k ∈ N, and I is the indicator
function.

d) Rate of misdetection (MDR): measures whether nodes
implementing the detection algorithm are misclassifying active
adversarial nodes as honest nodes. This is quantified as fol-
lows: MDR(k) = 1

|EA|
∑

(i,j)∈EA
I(D(i, j)(kL) < L

2 ), where
EA ⊆ (V \ Vc,a)× Vc,a.

IV. METHOD OF DETECTION

The method of detection of active adversarial nodes in this
paper is based on the work of [27]. Here, the method of
determining whether a node is an active adversary or not
is defined with the transmitted variable y·|i node i receives
from its neighbours. The following assumptions are made to
implement the detection algorithm.

Assumption 1: The amount of active adversarial neighbours
a node has is less than half of the total amount of its
neighbours. Hence, di

2 > |{j ∈ Ni ∩ Vc,a | (i, j) ∈ E}|.
Assumption 2: The graph G remains connected even when

the node-set Vc,a is removed.

Algorithm 1 Detection and Mitigation
1: Input: Threshold scaling α, Segment length L.
2: Set D(i, j) = 0 for each i, j ∈ V .
3: for t = 1, 2, . . . do
4: for all i ∈ V do
5: for each agent j ∈ Ni do
6: Compute ∆Yi,j(t), δi according to (6), (7)
7: end for
8: if ∆Yi,j(t) > δi then
9: Increase D(i, j).

10: end if
11: if t ≡ 0 (mod L) then
12: if D(i, j) > L

2 then
13: Node i ignores1 the updates of j for the next L

iterations, and stops sending updates to j.
14: else
15: Node i continues using the updates of node j.
16: end if
17: Set D(i, j) = 0.
18: end if
19: end for
20: end for

If an adversarial node were to steer away from the ob-
jective of the honest nodes by corrupting its local data si,
its transmitted variable yi|· would have a larger distance to
the transmitted variables of other honest nodes. In the case
of PDMM, because of the minus-sign difference between the
y variables, the absolute value of yi|j is taken. Leveraging
Assumption 1, the median of the data of neighbouring nodes
will be the data value of one of the honest neighbours.

Let mi denote the median of the neighbouring data of node
i, given by

mi = med{|yi|j | : j ∈ Ni},

and let ∆Yi,j be defined as

∆Yi,j = ∥|yi|j | −mi∥∞, j ∈ Ni. (6)

The values of ∆Yi,j will then be compared to the scaled
median absolute deviation (SMAD), given by

SMADi = αmed{||yi|j | −mi|∞ : j ∈ Ni}, (7)

where α is a scaling factor. This threshold determines whether
a node is corrupt or not. Again, leveraging Assumption 1,
the SMAD is a powerful method of determining a threshold
because it compares the distance other neighbours have from
a neighbour that is guaranteed to be honest.

Utilising Assumption 1 and Assumption 2, the nodes can
flag and isolate an adversarial neighbour using Algorithm 1
while also being able to achieve the optimal solution in the
network for the objective function with its constraints. The
method of detection would be implemented in PDMM between

1The utilisation of the updates of node j stops, but node i keeps receiving
the updates for the next test, but does not acknowledge it as its neighbour.
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(3) and (4), to determine whether or not it should use the
update or acknowledge the neighbour.

The argument of the trade-off between privacy preservation
and adversarial detection can be made with any detection
method. This is a fundamental trade-off, as stronger privacy
measures inherently reduce the ability to gather information
for adversarial detection. As explained previously, if the
mutual information equals zero, then independent of any
detection method, no information about the private data of
the adversarial nodes can be gained.

V. SIMULATIONS

In this section, we will present the simulation results to show
the trade-off between achieving higher levels of privacy and
the ability to detect active adversarial nodes in the network.
Here we simulated a distributed network by generating a
random geometric graph (RGG) with n = 50 nodes and a

communication radius of r =
√

2 log(n)
n , as this ensures that

the graph is connected [36]. The data will be scalar-valued
(q = 1). We will introduce a single corrupt node b in the
graph, for which its local data will be sb = 104, this will make
the average converge to a non-optimal point if not removed.
The other nodes will have local data which is generated with
a Gaussian distribution around a mean of 25 with a variance
of 30 (si ∼ N (25, 30)) : ∀i ∈ (V \ Vc,a). First, for θ = 1

2
(ADMM), we set ρ = 1, α = 13, L = 5, as for the case of
θ = 1 (PDMM), we set ρ = 1, α = 10, L = 2. Figure 1 and
2 show the FAR, MDR and MSE output correctness, with the
implementation of the privacy-preserving framework and the
detection algorithm for ADMM and PDMM, respectively.

A. False alarm rate

The top subplot of the figures corresponds to the FAR. It is
observed that even as the noise variance in z(0) increases, the
FAR remains low, indicating how infrequently honest nodes
are incorrectly flagged as adversarial nodes. This is the case
for both ADMM and PDMM.

B. Rate of misdetection

The middle subplot shows the MDR, which decreases
slower with higher noise variance. The high MDR shows that
the detection algorithm often misses the adversarial node when
the noise variance in z(0) is large. For σ2 = 104 it is seen that
for ADMM the MDR converges to 0, but for PDMM the MDR
does not converge.

C. Output correctness

The bottom subplot shows the MSE, demonstrating that
when the MDR is nonzero, MDR ̸= 0, the MSE remains high
because the adversarial node b can still skew the network’s
output for both ADMM and PDMM. Thus, while increased
noise in z(0) preserves privacy, it also hinders the detection
algorithm’s ability to detect the adversarial node, revealing
the trade-off and validating our theoretical claims.

Fig. 1. ADMM simulation with different variance levels for the noise in z(0).

Fig. 2. PDMM simulation with different variance levels for the noise in z(0).

VI. CONCLUSION

In this paper, we presented a hybrid approach for detecting
active adversarial nodes while utilising a privacy-preserving
framework for the PDMM algorithm. We have shown that
when the data of nodes achieves perfect secrecy, it becomes
impossible for any detection algorithm to detect active ad-
versarial nodes in distributed average consensus algorithms.
Therefore, when the mutual information converges to zero
(I(Xi;O) = 0), no information about the private data can be
inferred, making the nodes indistinguishable from one another
with respect to one another’s private data. Numerical results
under various settings further consolidate our claims.
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