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Abstract—In a plethora of applications that involve sensing
networks or systems with multiple agents, it is fundamental to ob-
tain reliable and complete positioning information. Considering
a network of agents, this contribution focuses on the centralized
cooperative positioning problem exploiting inter-agent ranging
measurements, i.e., Euclidean distance matrix, and where only a
subset of agents are able to estimate their position (and associated
covariance) in a global frame. In that context, a standard
solution is given by the multidimensional scaling and mapping
(MDS-MAP) algorithm. In this article, an alternative maximum
likelihood estimation approach is proposed, which improves the
MDS-MAP performance and ensures asymptotical efficiency. An
illustrative example is provided to support the discussion.

Index Terms—Cooperative positioning, maximum likelihood
estimation, multidimensional scaling, Cramée-Rao bound, Eu-
clidean distance matrix.

I. INTRODUCTION

Intelligent transportation systems [1], location-based ser-
vices, the internet-of-things and wireless sensor networks [2]–
[4], or distributed sensing systems for scientific missions (e.g.,
largely distributed sensor arrays [5] and future satellite swarms
for radio interferometry in space [6]), to name a few, require
reliable and precise positioning information for their success-
ful operation. Such information, when the sensors of interest
are on Earth, outdoors and affected by nominal conditions,
is obtained through Global Navigation Satellite Systems [7],
being nowadays the cornerstone source of positioning data.
But in many applications GNSS are partially or not available,
and alternative localization techniques must be accounted for,
typically exploiting other radiofrequency signals [4], [8], [9].

In the context of multiple agents or sensing networks (e.g.,
swarm of satellites/vehicles or distributed sensing systems),
two positioning approaches exist. In the typical cooperative
localization/positioning framework [1]–[4], [10], each agent
in the network exploits both local and external informa-
tion, the latter received from neighboring (aiding) agents,
in order to compute its own position. On the other hand,
some applications require to estimate the position of all
agents at once, in order to preserve the inherent geometry
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constraints, for network control tasks, or other application-
dependent requirements (e.g., measurement synchronization in
distributed instruments), that is, localization of the complete
set in a centralized manner. This contribution focuses on the
centralized localization problem, where the main assumptions
are that, i) only a subset of agents are able to estimate
their position (and associated covariance), and ii) inter-agent
ranging is available for all agents in the network, that is, we
consider a complete Euclidean distance matrix (EDM) [11].

A possible solution is given by the maximum likelihood
estimator (MLE), which is known to be asymptotically ef-
ficient (i.e., in the large sample and/or high signal-to-noise
ratio regimes [12], [13]), that is, its mean square error (MSE)
tends to the Cramér-Rao bound (CRB). A problem with the
MLE is its computational complexity, and that it requires a
good initialization to obtain the global solution. An alternative
is to resort to multidimensional scaling and mapping (MDS-
MAP), a suboptimal two-step solution that is less computa-
tionally demanding and easily implementable (refer to [14]
and references therein). In this article we show that the MDS-
MAP estimate is asymptotically at the vicinity of the global
minimum of the MLE cost function, leading to a feasible
MLE Gauss-Newton implementation. An illustrative example
is given to show that i) a symmetrized MDS outperforms the
standard MDS; ii) while the MLE is efficient, the MDS-MAP
is not; and iii) there exists a limit on the achievable precision
that depends on the observations’ variance.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The system is composed of N sensing devices. Let X =
[x1 . . . xN ] ∈ RD×N , {xn}Nn=1 ∈ RD, be the agents’
position matrix to be estimated. In the ideal case, one may have
access to the noise-free distances between all agents, dn→l =
∥xn − xl∥, and the corresponding EDM is constructed from
the squared distances as follows [11]1,

D = edm(X) ⇔ [D]n,l = d2n→l, (1)

D = diag
(
XTX

)
1T
N − 2XTX+ 1Ndiag

(
XTX

)T
. (2)

1IN is the identity matrix of dimension N, and 1N is a N-dimensional
vector where all components are equal to 1.
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Notice that D is invariant to a translation, edm (X) =
edm

(
X− x01

T
N

)
, ∀x0 ∈ RD; and to a unitary transformation,

edm (X) = edm (UX), ∀U ∈ RD×D | UTU = UUT = ID.
This implies that X cannot be identified in a global frame us-
ing only D. A possible solution is to consider a known position
for a subset of agents, N ′ ≤ N , i.e., X = [XN ′ XN−N ′ ] ∈
RD×N , with known XN ′ and unknown XN−N ′ .

In practice, both N ′ agents’ position and inter-agent dis-
tances are estimated, and distances may be asymmetric,
d̂n→l ̸= d̂l→n. Under a zero-mean Gaussian noise assumption,

d̂n→l = ∥xn − xl∥+ nn,l ∼ N
(
dn→l, σ

2
d

)
,

x̂n′ = xn′ + nn′ ∼ N
(
xn′ , σ2

pID
)
,

(3)

which leads to an estimated subset X̂N ′ = [x̂1 . . . x̂N ′ ] and
estimated EDM D̂, with [D̂]n,l = d̂2n→l.

The problem is the estimation of X from EDM D̂, and
considering the estimated subset of positions X̂N ′ .

III. MULTIDIMENSIONAL SCALING AND MAPPING

The MDS-MAP is a two-step algorithm that provides a
solution to the problem stated above:

• Step 1 - MDS: Position computation in a local reference
frame using inter-agent distances, i.e., from the EDM.

• Step 2 - MAP: Position transformation into a real frame
using position estimates of a subset of agents, i.e., es-
timate a translation vector and orthonormal matrix to
transform the estimated local positions into absolute ones.

A. Ideal MDS-MAP

In the ideal case, we have access to D and XN ′ . If we
consider a generic translation xs = Xs, s ∈ RN×1,

Ys = X− xs1
T
N = X

(
IN − s1T

N

)
, (4)

and under the condition 1T
Ns = 1,

(Ys)
T
Ys = −1

2

(
IN − 1NsT

)
D
(
IN − s1T

N

)
= Ds. (5)

Ys admits a SVD, Ys = UsΣs (Vs)
T , and then

(Ys)
T
Ys = Vs (Σs)

T
Σs (Vs)

T
= Ds,Σs ∈ RD×N , (6)

where rank (Σs) = rank (Ys) ≤ min {D,N}. One can
identify Σs and Vs by performing an EVD on Ds, and

Zs = Σs (Vs)
T ⇔ Ys = UsZs

⇔ X = UsZs + (Xs)1T
N , (7)

which implies that Zs leads to matrix X, now unknown with
respect to a translation and unitary transformation.

In the MAP step we exploit the known positions XN ′ . If
we consider Zs =

[
Zs

N ′ Zs
N−N ′

]
and Π⊥

1N′ = IN ′ − 1N′1T
N′

N ′ ,

XN ′ = UsZs
N ′ + (Xs)1T

N ′ , (8)

XN ′Π⊥
1N′ = Us(Zs

N ′Π⊥
1N′ ), (centered positions). (9)

Us is obtained from the singular value decomposition (SVD)
of Zs

N ′Π⊥
1N′X

T
N ′ ,

(Zs
N ′Π⊥

1N′ )(XN ′Π⊥
1N′ )

T = Zs
N ′Π⊥

1N′X
T
N ′ = ΦsΥs (Ψs)

T

⇒ Ψs (Φs)
T
= Us, iff N ′ ≥ D + 1 and (10)

rank(Zs
N ′Π⊥

1N′ ) = rank(XN ′Π⊥
1N′ ) = D, (11)

and from (8) the translation is Xs = (XN ′ −UsZs
N ′)

1N′
N ′ .

X can be identified from an ideal EDM D only if N ′ ≥
(D + 1) positions are known and rank(XN ′Π⊥

1N′ ) = D,

X = UsZs +

(
(XN ′ −UsZs

N ′)
1N ′

N ′

)
1T
N . (12)

B. MDS-MAP from noisy observations

In practice, we only have access to the estimated D̂ and
X̂N ′ . Under this condition, can one still use the MDS-MAP
algorithm detailed in the previous Sec. III-A? We have now
that D̂s = − 1

2

(
IN − 1NsT

)
D̂
(
IN − s1T

N

)
, and the problem

can be reformulated as follows,

(V̂s, Σ̂s) = arg min
(V,Σ)

{∥∥∥V (ΣTΣ
)
VT − D̂s

∥∥∥2
F

}
, (13a)

Ẑs = Σ̂s(V̂s)T , Ŷs = ÛsΣ̂s(V̂s)T , (13b)

Ûs = arg min
U∈RD×D

UTU=ID

{∥∥∥X̂N ′Π⊥
1N′ −UẐs

N ′Π⊥
1N′

∥∥∥2
F

}
, (13c)

with ∥A∥F the Frobenius norm of A, ∥A∥2F = tr
(
ATA

)
.

We can show that asymptotically (i.e., σ2
d → 0 and σ2

p → 0)

lim
asymp

E[∥D̂−D∥2F ] = 0, lim
asymp

E[∥X̂N ′ −XN ′∥2F ] = 0,

then (V̂s, Σ̂s, Ûs) are consistent estimators of (Vs,Σs,Us).
Therefore, lim

asymp
E[∥X̂s −X∥2F ] = 0, and

X̂s = ÛsẐs +

(
(X̂N ′ − ÛsẐs

N ′)
1N ′

N ′

)
1T
N . (13d)

In the general case with asymmetric estimated distances,
d̂n→l ̸= d̂l→n, (13a) must be modified because V

(
ΣTΣ

)
VT

is a symmetric matrix, then being a constraint on the solution.
In that case, we consider a symmetrized matrix (and the
eigenvalue decomposition (EVD)), i.e.,

D̂s → D̂s + (D̂s)T

2
.

Notice that the identifiability conditions on (V̂s, Σ̂s, Ûs) is
N ′ ≥ D + 1 and rank(X̂N ′Π⊥

1N′ ) = D, which leads to
rank(Ẑs) = rank(Ŷs) = D. One may consider two possible
implementations of the MDS-MAP, detailed in Algorithm 1.

It is important to notice that

E[[D̂]n,l] = E[d̂2n→l] = d2n→l + σ2
n→l, (14)

E[D̂] = D+Σd, (15)

841



Algorithm 1: MDS-MAP from noisy observations

Input: D̂ and X̂N ′ .
1 Construct D̂s = − 1

2

(
IN − 1NsT

)
D̂
(
IN − s1T

N

)
2 Case 1: Standard MDS (SVD)
3 D̂s = Ω̂Σ̂V̂T , Ẑs = Σ̂s(V̂s)T with (Σ̂s, V̂s)

associated to the D largest singular values.
4 Case 2: Symmetrized MDS (EVD)

5
D̂s+(D̂s)T

2 = V̂Σ̂T Σ̂V̂T , Ẑs = Σ̂s(V̂s)T with
(Σ̂s, V̂s) associated to the D largest eigenvalues.

6 MAP (SVD)
7 Ẑs

N ′Π⊥
1N′ X̂

T
N ′ = Φ̂Υ̂Ψ̂, Ûs = Ψ̂s(Φ̂s)T with

(Ψ̂s, Φ̂s) associated to the D largest singular values.
8 MDS-MAP
9 X̂s = ÛsẐs +

((
X̂N ′ − ÛsẐs

N ′

)
1N′
N ′

)
1T
N

10 Return: X̂s

where Σd is a covariance matrix, including the case where
σ2
n→l may not be the same for different distance estimates.

Then, D̂ is a biased estimate of D, which a priori leads to
a biased estimate X̂s. In order to compensate such bias, one
should replace D̂ by D̂ −Σd. In practice, if σ2

n→l ≪ d2n→l,
the bias induced by the estimated EDM is negligible.

IV. A MAXIMUM LIKELIHOOD APPROACH TO
CENTRALIZED COOPERATIVE POSITIONING

The observation model (3) is a Gaussian conditional signal
model, for which the MLE is the asymptotically best estimator
in the MSE sense. Despite nearly optimal properties, this es-
timator typically suffers from a large computational cost, as it
may require solving a nonlinear multidimensional optimization
problem. In the sequel, we derive the MLE for centralized
positioning, and propose a feasible implementation.

A. Maximum likelihood estimator

If we gather the unknowns in vector θ = vec (X), define
B̂ = (D̂)1/2, and considering D = 3, the likelihood is,

p(B̂, X̂N ′ ;θ) = p(B̂;θ)p(X̂N ′ ;θ), (16)

p(B̂;θ) =
(
2πσ2

d

)− (N−1)N
2 e

− 1

2σ2
d

N∑
n=1

N∑
l=1,l ̸=n

(d̂n→l−∥xn−xl∥)
2

,

p(X̂N ′ ;θ) =
(
2πσ2

p

)− 3N′
2 e

− 1
2σ2

p

N′∑
n′=1

∥x̂n′−xn′∥2

,

and the MLE θ̂ML of θ is given by,

θ̂ML = argmax
θ

{
p(B̂, X̂N ′ ;θ)

}
= argmin

θ

{
C(B̂, X̂N ′ ;θ)

}
, (17)

C(B̂, X̂N ′ ;θ) = Cd(B̂;θ) + Cp(X̂N ′ ;θ), (18)

Cd(B̂;θ) =
1

2σ2
d

N∑
n=1

N∑
l=1,l ̸=n

(
d̂n→l − ∥xn − xl∥

)2
,

Cp(X̂N ′ ;θ) =
1

2σ2
p

N ′∑
n′=1

∥x̂n′ − xn′∥2 .

The cost function C (·) ≜ C(B̂, X̂N ′ ;θ) does not allow to
obtain a closed-form MLE, and looking for the solution on a
grid in the parameters’ space R3N is not feasible.

B. On the MLE implementation
Taking into account the consistency of the MDS-MAP

estimator θ̂s = vec(X̂s) (under the identifiability conditions
given in Sec. III-B), and the consistency of the MLE,

lim
asymp

Eθ[∥θ̂s − θ∥2] = 0, lim
asymp

Eθ[∥θ̂ML − θ∥2] = 0, (19)

∥θ̂ML − θ̂s∥ ≤ ∥θ̂s − θ∥+ ∥θ̂ML − θ∥, (20)

therefore,
lim

asymp
Eθ[∥θ̂ML − θ̂s∥2] = 0. (21)

The MDS-MAP estimator θ̂s is asymptotically at the vicinity
of the global minimum of C (·), that is, θ̂s can be used to
obtain θ̂ML through a Gauss-Newton approach. Indeed,

∂C(B̂, X̂N ′ ; θ̂ML)

∂θ
≃ ∂C(B̂, X̂N ′ ; θ̂s)

∂θ

+
∂2C(B̂, X̂N ′ ; θ̂s)

∂θT∂θ
(θ̂ML − θ̂s), (22)

and then,

θ̂ML ≃ θ̂s −

(
∂2C(B̂, X̂N ′ ; θ̂s)

∂θ∂θT

)−1
∂C(B̂, X̂N ′ ; θ̂s)

∂θ
. (23)

The Gauss-Newton MLE in (23) uses the instantaneous Hes-
sian, but it has been shown [15], [16], that considering its
mean value leads to a more stable solution,

θ̂ML ≃ θ̂s −

(
Eθ

[
∂2C(B̂, X̂N ′ ; θ̂s)

∂θ∂θT

])−1
∂C(B̂, X̂N ′ ; θ̂s)

∂θ
.

(24)

C. Computing the gradient, the Hessian and its mean
The gradient of interest in (23) and (24) is given by,

∂C(B̂, X̂N ′ ;θ)

∂θ
=

∂Cd(B̂;θ)

∂θ
+

∂Cp(X̂N ′ ;θ)

∂θ
, (25)

∂Cd(·)
∂xn

= 2
σ2
d

N∑
l=1,l ̸=n

(
∥xn − xl∥ − d̂n→l+d̂l→n

2

)
xn−xl

∥xn−xl∥

∂Cp(·)
∂xn′

= 1
σ2
p
(xn′ − x̂n′)

The corresponding Hessian and its mean value are,

∂2C(B̂, X̂N ′ ;θ)

∂θ∂θT
=

∂2Cd(B̂;θ)

∂θ∂θT
+

∂2Cp(X̂N ′ ;θ)

∂θ∂θT
, (26)

∂2Cd(·)
∂xl∂xT

n
= − 2

σ2
d

(
Πxn−xl

+
(
1− d̂n→l+d̂l→n

2∥xn−xl∥

)
Π⊥

xn−xl

)
∂2Cd(·)
∂xn∂xT

n
= 2

σ2
d

N∑
l=1,l ̸=n

Πxn−xl
+
(
1− d̂n→l+d̂l→n

2∥xn−xl∥

)
Π⊥

xn−xl

∂2Cp(·)
∂xl′∂x

T
n′

= 03×3,

∂2Cp(·)
∂xn′∂xT

n′
= 1

σ2
p
I3
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Eθ

[
∂2C(·)
∂θ∂θT

]
= Eθ

[
∂2Cd(·)
∂θ∂θT

]
+ Eθ

[
∂2Cp(·)
∂θ∂θT

]
, (27)

Eθ

[
∂2Cd(·)
∂xl∂xT

n

]
= − 2

σ2
d
Πxn−xl

Eθ

[
∂2Cd(·)
∂xn∂xT

n

]
= 2

σ2
d

N∑
l=1,l ̸=n

Πxn−xl

Eθ

[
∂2Cp(·)
∂xl′∂x

T
n′

]
= 03×3,

Eθ

[
∂2Cp(·)

∂xn′∂xT
n′

]
= 1

σ2
p
I3

where the orthogonal projector is Πxn−xl
= (xn − xl)(xn −

xl)
T / ∥xn − xl∥2, and Π⊥

xn−xl
= I3 −Πxn−xl

.

D. Cramér-Rao Bound

In order to evaluate the optimality of both MLE and
MDS-MAP, it is interesting to compare the MSE with the
corresponding CRB. For the Gaussian signal model of interest
we can directly resort to the Slepian-Bangs formula [17] to
compute the Fisher information matrix, Fθ, which leads to
CRBθ = F−1

θ . For the signal model (3), (16),

Fθ = −Eθ

[
∂2 ln p(B̂, X̂N ′ ;θ)

∂θ∂θT

]
= Fd

θ + Fp
θ, (28)

Fd
θ = −Eθ

[
∂2 ln p(B̂;θ)

∂θ∂θT

]
, Fp

θ = −Eθ

[
∂2 ln p(X̂N ′ ;θ)

∂θ∂θT

]
.

The first term Fd
θ has diagonal matrix terms Fd

xn,xn
, and off-

diagonal ones Fd
xn,xl

:

Fd
xn,xl

= − 2

σ2
d

Πxn−xl
, Fd

xn,xn
=

2

σ2
d

N∑
l=1,l ̸=n

Πxn−xl
. (29)

The second term is

Fp
θ =

1

σ2
p

[
I3N ′ 0
0 0

]
. (30)

It is interesting to notice that

Eθ

[
∂2C(B̂, X̂N ′ ;θ)

∂θ∂θT

]
= Fθ, (31)

lim
max{σ2

d,σ
2
p}→0

∂2C(B̂, X̂N ′ ;θ)

∂θ∂θT
= Fθ. (32)

V. VALIDATION

In order to assess the performance of the different methods
we consider an illustrative cooperative positioning example,
with a network of N = 10 agents, where N ′ = 4 (anchors)
have access to an estimated position x̂n. All agents estimate
the inter-agent distance, then leading to an asymmetric EDM
D̂. With X10 = [X4 X6], the position of the N −N ′ agents
X6 (tags) is randomly drawn in

[
−η

2 ,
η
2

]
, and for the anchors,

X4 = η

 0 1 cos(ϕ) cos(ϕ)
0 0 sin(ϕ) 0
0 0 0 sin(ϕ)

 .

The CRB is compared to the MSE (from 104 Monte Carlo
runs) obtained for the following four algorithms (we also
compute the efficiency as eff = MSE/CRB):

• The standard MDS-MAP detailed in Algorithm 1, using
the SVD (Case 1), named MDS-SVD-MAP.

• The symmetrized MDS-MAP detailed in Algorithm 1,
using the EVD (Case 2), named MDS-EVD-MAP.

• The MLE in (24), initialized with the symmetrized MDS-
MAP and with only 1 iteration for the Gauss-Newton.

• A clairvoyant MLE (CMLE), initialized with true system
positions, and again with only 1 iteration.

First, we consider a particular example with σp = 3, σd = 3,
ϕ = 45◦ and η = 100. The network configuration is shown in
Fig. 1 (top plot). The MSE for the different methods, together
with the CRB, is shown for this scenario in the middle plot
of Fig. 1, and the corresponding efficiency in the bottom plot.
The x axis, from 1 to 30, refer to the (x, y, z) components of
each agent (i.e., 1 to 12 for X4, and 13 to 30 for X6). We can
see that: i) the MSE of the symmetrized MDS-MAP is lower
than the MSE of the standard MDS-MAP (in general always
equal or lower); ii) both MLE and CMLE MSEs coincide with
the CRB; and iii) using both methods improves the position
estimates for X4 (i.e., σ2

p = 9.54dB). While the MLE is
efficient, both MDS-MAP solutions are not.

In the sequel, we consider the MSE for the subsets X4 and
X6 (instead of showing each coordinate as in Fig. 1), i.e., if
we consider θ4 = vec(X4), θ̂4 = vec(X̂4), θ6 = vec(X6)
and θ̂6 = vec(X̂6), then MSEθ4

= E[∥θ̂4 − θ4∥2] and
MSEθ6

= E[∥θ̂6 − θ6∥2] ; the corresponding bounds are
CRBθ4

= tr (CRBθ4
) and CRBθ6

= tr (CRBθ6
). The

results are shown in Fig. 2, where the top plot gives the
MSE results for both X4 and X6, for different values of σd,
considering a fixed σp = 1; and the bottom plot gives the
MSE results for different values of σp, considering a fixed
σd = 1. First, we can see again in both cases that the MLE
is efficient and the MDS-MAP is not. Also, it is interesting
to notice that there exists a limit on the achievable precision
that depends on the observations’ variance: i) in the first case,
with fixed σp = 1, when σ2

d → 0 both MSEθ4 and MSEθ6

tend to a constant value (a limit linked to σp); ii) in the second
case, with fixed σd = 1, when σ2

p → 0 MSEθ6
(the unknown

positions) tends to a constant value (a limit linked to σd). In
addition, while the MSEθ4 tends to 0 for the MLE, it tends to
a constant value for the MDS-MAP, departing from the CRB.

VI. CONCLUSIONS

The problem of interest was the localization of a network of
agents, from estimated inter-agent distances, and considering
position estimates for a subset of agents. Possible solutions to
this problem are given by the MLE and MDS-MAP. It was
shown that the MDS-MAP estimate is asymptotically at the
vicinity of the global minimum of the MLE cost function,
leading to a feasible MLE Gauss-Newton implementation. An
illustrative example was used to show that while the MLE is
efficient, the MDS-MAP is not. In addition, there exists a limit
on the achievable precision that depends on the observations’
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Figure 1: (Top) Position of the 10 agents; (Middle) MSE and
(Bottom) efficiency for the standard MDS-MAP, symmetrized
MDS-MAP, MLE and clairvoyant MLE.

variance, i.e., for a fixed σ2
p and σ2

d → 0 the MSE does not
tend to 0, and the same for a fixed σ2

d and σ2
p → 0.
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