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Palaiseau, France
nicolas.merlinge@onera.fr

Audrey GIREMUS
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Abstract—Autonomous navigation is a key aspect in unmanned
mobile robotics, where accurate and efficient localisation and
tracking are crucial. One of the challenges in these situations
is the reliable use of sensor data, particularly in environments
where GNSS is unavailable. Magnetometric navigation provides a
promising alternative by leveraging the anomalies of the Earth’s
magnetic field. However, accurate estimation in such settings is
hindered by noises, non-linearities and scarcity of environmental
information. Gaussian process regression-based particle filtering
can be considered to alleviate these difficulties.

In this paper, we propose to improve Gaussian process-based
particle filtering techniques by introducing a clustering step
to select the relevant training data, improving their computa-
tional efficiency and accuracy in the presence of spatial non-
stationarities. An auxiliary particle filter is considered due to its
robustness to particle degeneracy.

The approach was validated on simulated magnetometric data
for an unmanned aerial vehicle. Numerical results show that
the clustering step greatly reduces the computational cost of the
regression while maintaining the accuracy and convergence speed
of the particle filter, demonstrating that this technique offers
significant advantages for real-time autonomous navigation.

I. INTRODUCTION

Autonomous navigation is a fundamental challenge in
aerospace robotics, particularly in scenarios where global
navigation satellite system (GNSS) signals are unavailable or
unreliable. In such cases, alternative methods are required to
ensure accurate positioning. Magnetic field-aided navigation
has emerged as a promising approach, correlating spatial vari-
ations in the Earth’s magnetic field with local measurements
from an embedded sensor to estimate position, as presented
by [1]. However, the effectiveness of this method is limited by
the inherent non-linearities in the navigation model, as well as
the noisy and scarce nature of the available magnetic maps.

To address these challenges, particle filtering is commonly
used instead of Kalman filters due to its ability to handle non-
linearity and multimodal probability distributions. Addition-
ally, Gaussian process (GP) regression offers a probabilistic
framework able to grasp underlying spatial dependencies and
account for uncertainties, outperforming multilinear interpola-
tion of sparse and degraded measurements.

However, using for regression all the map samples at each
time step is not relevant due a prohibitive computational
complexity. While [2] alleviates this issue, it considers the GP
to be stationary, which cannot be assumed to be the case on
larger scales. As an alternative, we presented in [3] an adaptive
kriging method, which consisted in dynamically selecting the
set of samples to be used for kriging based on their proximity
with the swarm of particles. It proved efficient but failed to
take into account multi-modality in the posterior probability
density function to be estimated.

In this paper, we refine the proposed approach by clustering
the particles to select the relevant training data for each
obtained subset of particles. By reducing the number of train-
ing points, our method significantly enhances computational
efficiency while making it possible to handle spatial non-
stationarity in the map and preserving estimation accuracy.

II. PROBLEM STATEMENT

Autonomous navigation situations can be formally described
in a discrete state-space representation by a pair of equations:
at each time step k, the state xk ∈ Rdx follows the dynamic
Fk : Rdx × Rdν → Rdx and observes zk ∈ Rdz through
the observation function Hk : Rdx → Rdz . Because of
inaccuracies in both the dynamic and the observation models,
the two equations are affected by Gaussian white noises of
covariance matrices Qk and Rk respectively:{

xk ∼N (Fk(xk−1), Qk )
zk ∼N (Hk(xk), Rk )

(1)

Under this representation, Bayesian inference is perfectly
suited to provide a state estimate by computing the posterior
probability density function (PDF) of the system. The PDF
can then be reduced to a single point estimator by computing
its expectation:

x̂k ≜ E(xk|z1:k) =
∫
xk p(xk|z1:k) dxk (2)

and its associated covariance:

Pk ≜ V(x̂k) =
∫
(xk − x̂k)(xk − x̂k)

T p(xk|z1:k) dxk (3)
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A. Particle Filter

While numerous techniques exist to compute the PDF using
Bayesian estimation, the non-linearity and non-injectivity of
the observation model makes particle filtering methods highly
suited to encompass the potential multimodalities of the PDF.
As presented by [4], particle filters use importance sampling to
approximate the PDF as a mixture of Dirac delta distributions:

p(xk|z1:k) ≈
∑N

i=1 w
i
kδxi

k
(xk) (4)

where {xi
k, i ∈ [[1, N ]]} are the N particles in Rdx drawn at

each time step according to an importance density, usually
equal to the transition probability function:

xi
k ∼ q(xk|xi

k−1, zk) = p(xk|xi
k−1) (5)

Their respective weights wi
k, updated during the correction

step, are expressed as follows:

wi
k ∝ wi

k−1p(zk|xi
k) with

∑N
i=1 w

i
k = 1 (6)

The particle filter estimator corresponding to (2) is thus the
weighted sum of the particles:

x̂k =
∑N

i=1 w
i
kx

i
k (7)

and its covariance can be written as:

Pk =
∑N

i=1 w
i
k(x

i
k − x̂k)(x

i
k − x̂k)

T (8)

B. Gaussian Process Regression

In magnetic field-aided navigation, higher map resolutions
yield better estimations. In real-world applications however,
only noisy and undersampled field data is available instead
of a complete map. Furthermore, because the field exhibits
complex spatial dependencies, simple multilinear interpola-
tions fail to capture its underlying intercorrelations.

A powerful alternative called kriging is presented in [5], and
consists of finding the best linear unbiased estimator (BLUE)
from the sampled data, provided they are realisations of the
same GP. We assume that the estimation point and the samples
all follow a noisy zero-mean GP:{

z ∼ GP( m(x), K(x, x) +R )

∀i ∈ [[1, Ñ ]], z̃i ∼ GP( m(x̃i), K(x̃i, x̃i) + R̃ )
(9)

where x and x̃i are the inputs corresponding to z and z̃i

respectively, m : x 7→ 0 is the identically zero mean of the GP,
K is its covariance function, and R and R̃ are the respective
covariances of the additive white noises on z and z̃i. Using
X̃ ≜ [x̃1 · · · x̃Ñ ] and Z̃ ≜ [z̃1 · · · z̃Ñ ], the BLUE of
z knowing the Ñ samples z̃i is:

z∗ ≜
∑Ñ

i=1 λiz̃
i = ΛT Z̃ with E(z − z∗) = 0 (10)

where the vector of coefficients Λ is chosen to minimise the
error covariance:

Λ = argmin(V(z − z∗)) (11)

As proven by [5], the minimum of (11) is reached for:

z∗(x, X̃, Z̃) = K(x, X̃)
(
K(X̃, X̃) + R̃⊗ IÑ

)−1

Z̃ (12)

and the corresponding covariance is:

R∗(x, X̃) =K(x, x) +R⊗ IN−

K(x, X̃)
(
K(X̃, X̃) + R̃⊗ IÑ

)−1

K(X̃, x)
(13)

III. CLUSTERED ADAPTIVE KRIGING AUXILIARY
PARTICLE FILTER (CAK-APF)

As stated in section II-B, the available knowledge of the
environment is too poor to be able to navigate with (1) as is,
requiring kriging of the observation function to be usable. The
navigation system thus becomes:xk ∼N

(
Fk (xk−1) , Qk

)
zk ∼N

(
z∗k

(
xk, X̃, Z̃

)
, R∗

k

(
xk, X̃

) ) (14)

The kriged observation function requires choosing an ex-
pression for the covariance function K, and determining its
hyperparameters. Since the observation field is not supposed
to be stationary, the hyperparameters cannot be determined
beforehand and must be re-estimated in flight at each step
of the algorithm. Furthermore, not every sample from X̃ is
relevant depending on the spatial distribution of the particles
{xi

k} at step k.
Section III-A presents an efficient method to choose the

relevant samples to perform the regression, while section III-B
shows how to accommodate for the non-stationarity of the
field. Section III-C improves particle filtering by adding a pre-
propagation step, and section III-D joins these components in
a single algorithm.

A. Data selection

When choosing a covariance function K for the Gaussian
process modelling the field, one requirement is that it must be
of finite integral: ∫ ∫

|K(x, x̃)| dxdx̃ < +∞ (15)

This implies that the covariance function of two inputs must
tend towards 0 as they get further away in any direction:

K(x, x̃) −→
d(x,x̃)→+∞

0 (16)

It, in turn, means that samples from X̃ that are too far
away from any particle xi

k only add computational cost to the
regression without significantly improving the estimation. To
prevent this, we proposed in [3] to only use samples inside a
hypersphere centred around the predicted estimated state, with
a radius proportional to the largest eigenvalue of the predicted
covariance matrix:

Sk ≜ B
(
x̂k|k−1, α× max

λ∈sp(Pk|k−1)

(
3
√
λ
))

(17)

where α ∈ [1,+∞[ is a dilatation coefficient, x̂k|k−1 is the
predicted estimated state:

x̂k|k−1 ≜
∑N

i=1 w
i
k−1x

i
k (18)

and Pk|k−1 is the associated predicted covariance matrix:

Pk|k−1 ≜
∑N

i=1 w
i
k−1(x

i
k − x̂k|k−1)(x

i
k − x̂k|k−1)

T (19)
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With this method, (14) is rewritten under its adaptive kriged
form:xk ∼ N

(
Fk (xk−1) , Qk

)
zk ∼ N

(
z∗k

(
xk, Sk ∩ X̃, Sk ∩ Z̃

)
, R∗

k

(
xk, Sk ∩ X̃

) ) (20)

where Sk ∩ Z̃ is an abuse of notation to mean ”elements of Z̃
for which the corresponding x̃ are in Sk ∩ X̃”.

B. Clustering

Due to the spatial non-stationarity of the magnetic field, the
hyperparameters of K cannot be assumed constant throughout
space. However, particles close to each other can be assumed
to share the same GP hyperparameters. For this reason, we
propose to divide the particles into clusters to locally adjust
the hyperparameters and perform the regression.

In this paper, we use the Mean-shift clustering algorithm,
first introduced by [6], as it is a non-parametric method and
does not require a predefined number of clusters. It relies on
kernel density estimation to find the local maxima of the PDF
by gradually shifting each particle towards a maximum, and
associates particles that converged to the same maximum in a
single cluster. Formally, a cluster C is an equivalence class of
the binary relation:

(a ≡ b) ≜

(
an

n→+∞
= bn

n→+∞

)
(21)

where (xn)n∈N is the mean-shift sequence of a point x0,
defined by the recursive equation:

∀n ∈ N, xn+1 = m(xn)− xn (22)

and m : Rd → Rd is the weighted mean of the density given
some kernel function κ:

m : x 7→
∑N

i=1 κ(x
i − x)xi

/∑N
i=1 κ(x

i − x) (23)

Within C, (20) is modified such that (17) becomes:

SC
k ≜ B

x̂C
k|k−1, α× max

λ∈sp
(
PC

k|k−1

)
(
3
√
λ
) (24)

with x̂C
k|k−1 the clustered predicted estimator:

x̂C
k|k−1 ≜

∑
xi
k∈C w

i,C
k−1x

i
k (25)

P C
k|k−1 its covariance matrix:

P C
k|k−1 ≜

∑
xi
k∈C w

i,C
k−1

(
xi
k − x̂C

k|k−1

)(
xi
k − x̂C

k|k−1

)T

(26)

sp(M) the spectrum of a matrix M , and wi,C
k−1 the normalised

weights inside C:

wi,C
k−1 ∝ wi

k−1 with
∑

xi
k∈C w

i,C
k−1 = 1 (27)

C. Auxiliary Particle Filter

While the particle filter presented in section II-A is optimal
for an infinite number of particles, the approximation for a
finite number leads to a phenomenon of degeneracy, in which
the variance of the weights of the particles increase over the
iterations of the algorithm. A common solution, presented by
[7], is to add a regularisation step to the filter. However, doing
so increases the variance of the particles, which is already
inflated by kriging the observation function. It also introduces
new parameters that can be difficult to fine-tune.

Instead, [8] and [9] propose to model the joint probability
p(xk, i|z1:k), where i is the index of the parent particle xi

k−1,
and omitting i in the estimation. The auxiliary particle filter
(APF) works by choosing the importance density such that:

q(xk, i|z1:k) ∝ p(zk|µi
k)p(xk|xi

k−1)w
i
k−1 (28)

where µi
k ∼ p(xk|xi

k−1) are some samples, called auxiliary
particles, used to assess the consistency of the parent particles
with respect to the new observation p(zk|µi

k). The auxiliary
particles are then resampled to keep those with the highest
likelihood, and their parents xij

k−1 are used to compute the
PDF.

From Bayes’ theorem and using (28), the expressions of
λi
k and wj

k, respectively the weights of the auxiliary and the
”standard” particles can be established:

λi
k ∝ p(zk|µi

k)w
i
k−1 (29)

and
wj

k ∝ p
(
zk|xj

k

)/
p
(
zk|µij

k

)
(30)

D. CAK-APF

Since only a kriged interpolation is available instead of the
true observation function, APF needs to be adapted. While a
simple way to proceed would be to add the clustering, data
selection and kriging steps to two correction stages, it should
be noted that µij

k is designed to be a good representation of
the future xj

k. This means that µij

k and xj
k are likely to belong

to the same cluster, and have thus the same hyperparameters
of the GP.

Algorithm 1 presents the pseudo-code of CAK-APF using
the same clusters and hyperparameter estimations to compute
both the auxiliary and the standard weights. Notably, the
clustered data selection window defined in 24 exclusively ac-
counts for samples chosen by the current cluster, disregarding
selections made by any other clusters.

IV. NUMERICAL SIMULATIONS FOR MAGNETIC FIELD
AIDED NAVIGATION

A. Application to Magnetic Field Aided Navigation

The use case chosen in this paper to illustrate CAK-APF
is an unmanned aerial vehicle (UAV) flying in a rectilinear
uniform motion over Mexico, as shown by figure 1.

The UAV observes the sampled data X̃ , symbolised by the
× markers, of the local magnetic anomaly field, the data for
which comes from [10]. Its state is fully described by the
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Algorithm 1 CAK-APF
for i ∈ [[1, N ]] do

Draw µi
k from p(·|xi

k−1) ▷ Pre-propagation
end for
Compute

{
Clk, l ∈ [[1, ck]]

}
from (21) ▷ Clustering

for l ∈ [[1, ck]] do
Compute S

Cl
k

k with (24) ▷ Selection
for µi

k ∈ Clk do
Compute z∗k from clustered (20) ▷ Kriging
Compute λi

k from (29) ▷ Pre-correction
end for

end for
s←

∑N
i=1 λ

i
k

for i ∈ [[1, N ]] do
λi
k ← λi

k/s ▷ Normalisation
end for
{ij , j ∈ [[1, N ]]} = Resample

({
λi
k, i ∈ [[1, N ]]

})
for j ∈ [[1, N ]] do

Draw xj
k from p

(
·|xij

k−1

)
▷ Propagation

Associate xj
k to the cluster containing µij

k

Compute z∗k from clustered (20) ▷ Kriging
Compute wi

k from (30) ▷ Correction
end for
t←

∑N
j=1 w

j
k

for j ∈ [[1, N ]] do
wj

k ← wj
k/t ▷ Normalisation

end for

Fig. 1. Trajectory of the UAV over Mexico’s magnetic anomaly field

dx = 4 dimension vector x =
[
px py vx vy

]T
, with px

and py being the x and y coordinates of the UAV, and vx
and vy their respective velocities. The dynamical model of
the UAV is given by:

Fk : x ∈ R4 7→
[
I2 ∆tI2
0 I2

]
x (31)

where ∆t is the sampling period of the algorithm, and I2 is
the identity matrix of size 2.

In order to evaluate the different steps of CAK-APF, simu-
lations were performed on four different filters:

• The standard APF with known map instead of kriging;

• A static kriging APF, using every samples to perform the
regression (the estimation of the hyperparameters is done
once before the start of the Monte-Carlo runs);

• An adaptive kriged APF without clustering;
• CAK-APF as presented by algorithm 1.
NMC Monte-Carlo runs are performed per filter, during

which an estimation of the state x̂k is iteratively computed
over Niter iterations from an unknown state drawn from a
Gaussian distribution centred around the true initial state x0,
with covariance P0. Table I gives the values of the chosen
parameters.

TABLE I
SIMULATION AND CAK-APF PARAMETERS

Parameters Value
NMC 100
Niter 600

∆t 0.5s
map surface 200km × 200km

map resolution 1km × 1km
P0 diag([3000m, 3000m, 3m.s−1, 3m.s−1])2

N 5000
Qk diag([40m, 40m, 0.4m.s−1, 0.4m.s−1])2

Rk 802 nT2

Ñ 802

R̃ 802 nT2

α 2
resampling algorithm Kitagawa resampling from [4]

κ Gaussian kernel from [5]
hyperparameter estimation likelihood gradient ascent from [5]

K Epanechnikov function from [5]

B. Numerical Results

For each filter, their root mean square error (RMSE) has
been calculated according to:

RMSE : k ∈ [[1, Niter]] 7→

√∑NMC

m=1 ||φ(xk − x̂k,m)||22
NMC

(32)

where φ :
[
px py vx vy

]T 7→ [
px py

]T
is the projector

on the positions, xk is the true state at time k, and x̂k,m is
the corresponding estimation by the m-th Monte-Carlo run. A
histogram of the number of the samples used to perform the
kriging step for each filter has also been computed. Figure 2
gives the RMSEs over time of the four filters, and figure 3
presents their corresponding histogram.

Unsurprisingly, the greatest accuracy is achieved when APF
has access to the full and undisturbed map. On the other hand,
it must be noted that reconstructing the whole map with a static
Gaussian process prior to navigation yields mitigated results.
This can be explained by the non-stationarity of the anomaly
field, whose hyperparameters seem to have been adequately
estimated for iterations 75 to 200, but are less representative
outside this range. Similarly, while performing better than
its static counterpart, AK-APF exhibits a wide spread in the
selected samples, as determined by the covariance matrix from
(17). This results in a slower convergence and prevents it from
reaching the sub-kilometre accuracy of CAK-APF.
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Fig. 2. RMSE over time of the tested filters

Fig. 3. Histogram of the number of selected sampled used in the tested filters

While figure 3 shows that the median numbers of samples
for the adaptive kriging methods are relatively close, the
upper part of the distribution is much larger for AK-APF
than for CAK-APF. This is caused by highly multimodal
situations, where AK-APF encompasses irrelevant samples
between clusters, in areas where there are no particles. On
the other hand, the much narrower distribution of CAK-APF
ensures a more consistent computation time, which is crucial
in real-time applications.

For N particles, Ñ samples, and T << N iterations
required by Mean-shift to converge, the complexities of Mean-
shift, data selection and hyperparameter learning, and kriging
are O(TN2), O(Ñ3), and O(NÑ2) respectively. For an
average of 2 clusters, T ≈ 15, and considering that CAK-APF
uses on average 46% less samples than its AK counterpart,
this means that CAK is more than 2.5 faster than AK on
average, both of which are more than 6 orders of magnitude
faster than static kriging. The gap is even wider considering
that the histogram counts the selected data from every cluster
of a single iteration, so only a fraction of the samples is
simultaneously used, further decreasing the computational cost
of CAK-APF.

V. CONCLUSION AND PERSPECTIVES

In this paper, we improved GP-based particle filtering
by introducing a clustering step to select the most relevant

training data for the kriging step. By locally estimating the
hyperparameters of the GP modelling the environment, we
increased both computational speed and accuracy. Through
simulations of a UAV navigating with magnetic anomaly data,
we showed significant improvements from both static kriging
and a simpler adaptive algorithm from which this version is
based.

The results show that clustering particles not only optimises
the use of available samples but also ensures that the non-
stationarity of the magnetic field is adequately addressed. CAK
outperformed its counterparts, offering an effective solution
for real-time autonomous navigation in environments where
global navigation satellite systems are unavailable or unre-
liable. Furthermore, the use of APF helped mitigating the
particle degeneracy problem without introducing additional
parameters, thus enhancing the robustness of the algorithm.

Future work will focus on exploring other methods for data
selection and computing formal error bounds for the approx-
imated observation model. Additionally, incorporating real-
time adaptation of the magnetic field model and introducing
a simultaneous localisation and mapping (SLAM) formalism
could provide insights into its performance and scalability in
operational environments.
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