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Abstract—Particle filters on Lie groups enable nonlinear
filtering by randomly generating particles that preserve the
structure of rotation matrices. Despite their potential, they
suffer from high computational costs, weight degeneration, and
dimensionality issues. Sequential Markov Chain Monte Carlo
(SMCMC) methods mitigate these challenges by iteratively
refining state estimates. Among them, the Metropolis-Adjusted
Langevin Algorithm (MALA) leverages gradient information
to improve sampling efficiency. This paper extends MALA to
matrix Lie groups, introducing the LG-MALA algorithm, which
reduces computational demands while maintaining accuracy. Its
effectiveness is demonstrated in a challenging UAV navigation
scenario based on data fusion between inertial measurements
and landmark-based angular measurements.

I. INTRODUCTION

State estimation for nonlinear systems in robotics and
aerospace often involves high-dimensional and non-Gaussian
noise distributions. Traditional particle filters, though widely
used, face limitations in such scenarios, mainly due to particle
impoverishment and high computational costs. Sequential
Markov Chain Monte Carlo (SMCMC) methods have emerged
as alternatives [1] [2], offering improved sampling efficiency
through Markov chain transitions.

Recent research works showed that SMCMC on manifolds
outperform their Euclidean counterparts in terms of robustness,
accuracy, and computational efficiency [3] [4]. Among these,
filters on Lie groups stand out as a particularly effective
algebraic framework, especially when dealing with rotational
motion. An example includes the Lie Group Sequential
Markov Chain Monte Carlo filter (LG-SMCMC) [3], which
introduced an alternative to non-linear filtering.

Langevin dynamics provides a framework for modeling the
behavior of systems contingent on both deterministic and
stochastic forces. It plays a significant role in the field of
estimation, particularly in the context of sampling algorithms.
One key application is the Metropolis-Adjusted Langevin
Algorithm (MALA) [5], which combines Langevin dynamics
with the Metropolis-Hastings algorithm to efficiently sample
from complex posterior distributions in Bayesian inference
problems.

This paper extends the framework of SMCMC to
the Lie Group Metropolis-Adjusted Langevin Algorithm
(LG-MALA). By leveraging Langevin dynamics guided

by gradient information, the LG-MALA filter refines
the exploration of posterior distributions. Incorporating a
preconditioning matrix based on Fisher information on Lie
groups ensures efficient sampling by adapting step sizes to
local geometrical properties. We evaluate the LG-MALA
filter through simulations in a UAV navigation scenario,
demonstrating its ability to address the limitations of
traditional particle filters.

The paper is structured as follows: Section II presents
the estimation problem and introduces the paper key
concepts. Section III outlines the framework for applying
Langevin diffusion to Lie groups, which constitutes the
main contribution of this work. In Section IV, a simulated
UAV navigation problem is presented, demonstrating the
effectiveness of the proposed method. Finally, Section V wraps
up the paper with concluding remarks.

II. PROBLEM STATEMENT

A. Introduction to Lie groups

1) Basic Concepts: A Lie group (G, ·) refers to a manifold
that is endowed with a group structure [6]. This group is
characterized by a tangent space at the identity element,
commonly referred to as the Lie algebra, and denoted as
g. Near the identity element I , there exists a local bijection
between the Lie group and the Lie algebra, represented by the
group exponential map expG : g → G and the group logarithm
map logG : G → g. In the case of matrix Lie groups, these
maps can be expressed using matrix series [6]:

expG(X) =

∞∑
k=0

Xk

k!
; logG(X) =

∞∑
k=1

(−1)k+1

k
(X − I)k.

(1)
For a Lie algebra g of dimension d, we define two
isomorphisms with Euclidean space as follows:

[·]∧ : Rd → g, and [·]∨ : g → Rd, (2)

where their compositions with expG and logG are represented
by:

expG([·]∧) = exp∧G(·) ; [logG(·)]∨ = log∨G(·). (3)

A summary of these transformations is shown in Figure 1.
It should be noted that the bijection between G and Rd

850ISBN: 978-9-46-459362-4 EUSIPCO 2025



theoretically holds in the neighborhood of the identity element
Id.

Fig. 1: Graphical illustration of the Lie group structure [7].

2) Group Errors: Consider two state matrices, denoted
as (X, X̂), belonging to the group (G, ·). Since the group
operation is non-commutative, the group error between X
and X̂ can be expressed in two forms: on the right as
ηR = X̂X−1, and on the left as ηL = X−1X̂ . In what
follows, only the left form is considered. Additionally, the
representation of the group error η in Euclidean space, denoted
as ξ, is given by:

ξ = log∨G(η). (4)

This formulation is a key element in the performance of Lie
group filters, since it maps a matrix error to a vector error.
This is of practical interest to maintain accuracy over a wide
range of values.

3) Probability Distributions on Lie Groups: Let X ∼
NG(µ, P ) represent a random matrix that follows a
concentrated Gaussian distribution on G with mean µ and
covariance matrix P . Its probability density function is
approximated by [7] [8]:

p(X) ≈ 1√
(2π)d det [P ]

e−
1
2 ||ξ||

2
P , (5)

where ξ = log∨G(µ
−1X) in the left case and || · ||P denotes

the Mahalanobis norm with respect to P . This approximation
holds when ξ remains within the bijective domain of the group
exponential. [8].

B. Sequential Markov Chain Monte Carlo on Lie Groups

Let {Xk}k∈N∗ ∈ G denote a sequence of discrete-time state
matrices and {Yk}k∈N∗ ∈ H the set of observations. The
system dynamics are described by:{

Xk = f(Xk−1, n
q
k−1),

Yk = h(Xk, n
r
k),

(6)

where (nq
k−1, n

r
k) are noise terms and (f, h) are non-linear

functions that respectively represent the dynamics and
observation models. SMCMC methods are based on Monte
Carlo simulations and rely on Bayesian theory to estimate the

posterior density of the state Xk given the measurements Y1:k.
The Bayes rule states that:

p(Xk|Y1:k) ∝ p(Yk|Xk)p(Xk|Y1:k−1). (7)

This equation updates our beliefs about the state based on
new measurements. It is shown that the posterior density can
be written as a weighted sum of Dirac [9]:

p(Xk|Y1:k) ≈
Nb+Np∑
i=Nb+1

wi
kδXi

k
(Xk), (8)

where Np is the number of particles i and Nb the burn-in
parameter. The weight is computed based on the posterior and
the chosen proposal densities explained subsection II-C:

wi
k ∝ p(Xi

k|Y1:k)

q(Xi
k)

. (9)

The Metropolis-Hastings (MH) algorithm then generates new
samples X̃k from the proposal density q and accepts or rejects
them based on a defined acceptance probability:

A(X̃k, X
j−1
k ) = min

(
1,

p(X̃k|Y1:k)

p(Xj−1
k |Y1:k)

q(Xj−1
k |X̃k)

q(X̃k|Xj−1
k )

)
,

(10)
where Xj−1

k is the current accepted particle and q(X̃k|Xj−1
k )

is the proposal density. The Markov Chain method and the
sampling process at step k are detailed in [3].

The LG-SMCMC follows a process similar to that of the
traditional SMCMC, but ensures that each particle resides in
the Lie group manifold [3]. Initially, particles are sampled
from a centered Gaussian distribution in the Euclidean space:

ξ1:Np ∼ NG(0, P0). (11)

Each particle is then mapped to the group using the
exponential map and adjusted by a left mean µ:

Xi
0 = µ exp∧G(ξ

i). (12)

Next, each particle propagates according to the system
dynamics:

Xi
k = f(Xi

k−1, n
qi

k−1), (13)

and the weighting step shown in equation (9) is performed.
The state estimate is then computed as a normalized weighted
mean of the particles, with the left case mean given by [10]:

X̂k = argmin
µk

Np∑
i=1

wi
k log

∨
G(µ

−1
k Xi

k). (14)

The covariance matrix is then updated using:

P̂k =

Np∑
i=1

wi
k log

∨
G(X̂

−1
k Xi

k) log
∨
G(X̂

−1
k Xi

k)
⊤. (15)
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C. Metropolis-Adjusted Langevin Algorithm

Langevin dynamics (or Langevin diffusion) is a method
used to describe the evolution of a system under the influence
of both deterministic forces and random fluctuations. It is often
used in statistical mechanics, physics, and machine learning to
simulate the motion of particles in a fluid or gas [11].

The Metropolis-Adjusted Langevin Algorithm (MALA)
[12] leverages gradients of the log-likelihood function to guide
particle updates. Let {xk}k∈N∗ ∈ Rd denote the state vector
and {yk}k∈N∗ ∈ Rm the measurement vector in euclidean
space, the proposal density q(x̃k|xj−1

k ) of the acceptance
probability shown equation (10) is taken as:

q(x̃k|xj−1
k ) =

N
(
x̃k

∣∣∣∣xj−1
k +

ϵ2

2
Σk∇ log p(xj−1

k |y1:k), ϵ2Σk

)
. (16)

The proposal step can then be expressed as:

x̃k = xj−1
k +

ϵ2

2
Σk∇ log p(xj−1

k |y1:k) + ϵΣ
1
2

k η
j−1
k , (17)

where:
• ϵ is the step size,
• Σk is the preconditioning matrix step k,
• ηk ∼ N (0, I) is a standard Gaussian noise vector.

Accepted particles are then used to calculate the weighted
mean for state estimation.

III. SEQUENTIAL METROPOLIS-ADJUSTED LANGEVIN
ALGORITHM ON LIE GROUPS

The Sequential Metropolis-adjusted Langevin Algorithm on
Lie groups (LG-MALA) detailed in Algorithm 1 iteratively
updates system states using sequential gradient-oriented
sampling. By deriving analytical formulas specifically tailored
to Lie groups, the method achieves new benchmarks in highly
non-linear model estimation, such as the attitude-dependent
dynamics of the UAV shown in Section IV. To this
end, Section A introduces the LG-MALA scheme and
its pseudo-code, while Section B details the Fisher-based
Langevin preconditioning formulation.

A. MALA formulation on Lie Groups

To ensure that the diffusion remains as faithful as possible
to the model, we compute the proposal in the Lie algebra
using equation (17) and then map it back to the group using
equation (3). The log-posterior distribution is given by:

log p(Xk|Y1:k) =

C− 1

2

∣∣∣∣∣∣∣∣ log∨G (X̂−1
k Xk

) ∣∣∣∣∣∣∣∣2
P̂k

− 1

2

∣∣∣∣∣∣∣∣ log∨G (h(Xk)
−1Yk

) ∣∣∣∣∣∣∣∣2
Rk

,

(18)

where νk = log∨G
(
h(Xk)

−1Yk

)
is the left innovation, Rk is

the measurement noise covariance matrix and C is a constant
term. From [13] and [7], we can compute the gradient of the
log-posterior:

∇ log p(Xk|Y1:k) = −φT
G (ξk) P̂

−1
k ξk−φT

G (νk)R
−1
k νk, (19)

where φG(.) = adG(.)/
(
eadG(.) − 1

)
is the inverse left

Jacobian matrix on G and adG is the adjoint action of the
group. The intricacies of this calculus are explained in [7].
The proposed particle, sampled in the Lie algebra, is mapped
to the group via the exponential map exp∧G(·), yielding
a Langevin-diffused proposal on Lie groups and evaluated
through the Metropolis-Hastings (MH) algorithm. The main
contribution over LG-SMCMC [3] is the replacement of a
naive MH step with a preconditioned MALA scheme. The
next section details the choice of preconditioning matrix Σk.

B. Preconditioning with Inverse Fisher Information Matrix

Preconditioning is a crucial enhancement in the MALA
to improve sampling efficiency. By incorporating a
preconditioning matrix Σk, the algorithm adapts the proposal
step size to the local geometry of the target distribution [14].

The inverse Fisher information matrix J−1
k provides a

more geometrically informed preconditioning. The Fisher
information matrix Jk is defined as:

Jk = −E
[
∂2 log∨G p(Yk|Xk)

∂Xk∂X⊤
k

]
. (20)

The inverse of Jk is homogeneous to a covariance matrix
and is referred to as the Posterior Cramér-Rao Lower Bound
(PCRB). The PCRB adjusts the proposal based on the
curvature of the posterior, making it particularly effective in
regions of strong anisotropy. In Lie groups the PCRB can be
computed using the LG-PCRB scheme [15].

IV. APPLICATION TO NAVIGATION

We apply the Monte Carlo method from Section III to
UAV navigation based on data fusion between an Inertial
Measurement Unit (IMU) and the measurements of landmarks
Angles of Arrival (AOA). The UAV proceeds to a 75.1 s flight
(δt = 0.1 s) at 160 m.s−1 for which the trajectory is shown
Figure 2.

A. Dynamical model

The Earth frame [e] is fixed, while the body frame [b] moves
with the UAV. The goal is to estimate state matrix Xk on Lie
groups:

Xk =

[
Ce

b xe ve

02,3 I2

]
, (21)

comprised of position xe, velocity ve, and attitude θe =
log∨G(C

e
b ), using discretized second-order kinematic equations:

Ce
b,k+1 = Ce

b,k exp
∧
SO(3)

(
δt ωb

eb + nqrot

k+1

)
,

vek+1 = vek + δt
(
Ce

b,ka
b
eb + ge

)
+ nqvel

k+1,

xe
k+1 = xe

k + δt vek + 0.5 δt2
(
Ce

b,ka
b
eb + ge

)
+ nqpos

k+1 ,

(22)
where (abeb, ω

b
eb) are IMU-measured acceleration and rotation

rates, ge is gravity, and nq
k represents Gaussian noise. IMU

characteristics are listed in Table I.
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Algorithm 1: (Left) Metropolis-Adjusted Langevin
Sequential Markov Chain Monte Carlo on Lie Groups

Initialization
• Initial sample: ξ1:Np ∼ NEd(0, P0)

• Lie group sampling: X1:Np

0 = µ0 exp
∧
G(ξ

1:Np)

Time loop: for k = 2 : T

1) Initialize Markov Chain
• Propagate: X1:Np

k = f(X
1:Np

k−1 , nq1:Np

k−1 )

• Initialize: X
1

k = X̂k|k−1, ω
1
k = 1

Np

2) Chain loop: for j = 2 : (Nb +Np)

• Generate a random variable: I ∼ U(1, Np)
• Choose particle: Xj

k = XI
k

• Compute preconditioning matrix: Σj
k = J(Xj

k)
−1

• Compute proposal on Lie algebra from (17),(19)
• Map it to the group with the exponential map (3)
• Compute weight ω̃k from equation (9)
• Generate a random variable: u ∼ U(0, 1)
• If u ≤ A(X̃k, X

j−1

k ) from equation (10)

– Accept the proposal: X
j

k = X̃k, ω
j
k = ω̃k

– Otherwise, reject it: X
j

k = X
j−1

k , ωj
k = ωj−1

k

End Chain
3) State estimation

• Retain last Np particles: X1:Np
k = X

Nb+1:Nb+Np

k

• Normalize weights: ω1:Np
k ∝ ω

Nb+1:Nb+Np

k

• The mean is given by X̂k from equation (14)
• The matrix covariance P̂k is given equation (15)

End loop

B. Measurement model

The UAV observes thirteen known beacons at fixed positions
{pe1, ..., pe13}, measuring angles of arrival (AOA) (Figure 2):

Yn =

[
arctan 2

(
∆b

n,y,∆
b
n,x

)
arctan 2

(
∆b

n,z,
√

(∆b
n,x)

2 + (∆b
n,y)

2
)]+ nr, (23)

where ∆b
n = Cb

e(p
e
n − xe) is the relative distance in frame

[b], and nr is a Gaussian noise which values are given in
Table I. The function arctan 2(y, x) ensures correct angle
computation.

Sensor (IMU) Noise (1σ) Rate
Accelerometer 10−4 m.s−2 10 Hz

Gyrometer 10−5 rad.s−1 10 Hz
Sensor (AOA) Noise (1σ) Rate

AOA 20 mrad 10 Hz

TABLE I: Simulated sensor parameters.

C. Filter Implementation and Comparison

We implement two filters in the (Left) Lie group framework:
the LG-SMCMC [3] and the LG-MALA. Their performance is
compared using the Root Mean Square Error (RMSE), which
measures estimation accuracy [16].

Fig. 2: Simulated trajectory. Landmarks represent
environmental features observed by the UAV.

D. Simulations

The measurements and process noise tuning of the filters are
outlined in Table III and the initial dispersion of the particles
in Table II.

Initial uncertainties Standard deviation (1σ)
Position 300 m
Velocity 5 m.s−1

Attitude angles 100 mrad

TABLE II: Initial particle dispersion of the filters, denoted as
ninitial ∼ N (0, σ).

Process noise Standard deviation (1σ)
Position 5 m
Velocity 0.5 m.s−1

Attitude angles 10 mrad
Measurement noise Standard deviation (1σ)

AOA 20 mrad

TABLE III: Standard deviations of the filters, consistent across
all filter types.

Monte Carlo simulations were conducted using empirically
chosen parameters: Np = 1000, Nb = 100 and ϵ = 0.2. Over
the course of 100 iterations, the performance of non-Euclidean
and Euclidean methods was compared. Only convergent results
are considered in order to exclude statistical outliers. A
simulation is classified as non-convergent if, during the final
five measurement steps, the state estimate lies out of the
confidence ellipsoid defined by the covariance matrix. Table IV
presents the proportion of successful runs and the convergence
time when the position RMSE reaches 5 m. The RMSE values
of the average errors on position, velocity, and the Yaw angle
are detailed in Table V. To enhance readability, the table
provides the norm instead of their individual components.

As shown in Table V, MALA variants consistently yield
lower average errors in position, velocity and attitude
by utilizing gradient information. They demonstrate good
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Filters Convergence rates Convergence time
Position RMSE at 5m

SMCMC 98% 30.8 s
MALA 99% 28.5 s

(L)LG-SMCMC 99% 30.8 s
(L)LG-MALA 99% 4.5 s

TABLE IV: Convergence rates and time of tested filters over
100 MC.

Filters SMCMC MALA (L)LG-SMCMC (L)LG-MALA
Position [m] 10.4 9.13 9.10 7.87
Velocity [m/s] 4.21 3.74 3.99 3.83
Yaw [mrad] 0.48 0.47 0.47 0.46

TABLE V: Average root mean square error norm of the
position and velocity, as well as the Yaw angle, for convergent
runs.

convergence rates (see Table IV) and higher convergence
speeds (see Figure 3). Furthermore, when endowed within the
Lie groups structure, the estimation is further improved with
a significantly higher convergence speed in position. Thus,
(L)LG-MALA emerges as a compelling alternative for highly
non-linear state estimation, retaining the advantages of Lie
group filters, such as enhanced angle error management. The
results highlight its strong potential for industrial applications.

V. CONCLUSION

This paper introduces a novel formulation of the
Sequential Metropolis-Adjusted Langevin filter on Lie groups
(LG-MALA). The proposed approach improves accuracy
and robustness compared to classic Euclidean methods,
particularly in scenarios with challenging noise discrepancies.
Future work will explore its application to more complex
problems with higher-dimensional state spaces, further
leveraging the advantages of gradient-based SMCMC filters
on Lie groups.
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