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Abstract—In radar and radionavigation systems, waveform de-
sign optimization has mostly focused on Gabor bandwidth (GB),
as a metric to infer code phase offset estimation accuracy. While
optimization algorithms have maximized GB w.r.t. to specific
design parameters and receiver bandwidth, they lack closed-
form solutions for pulse shapes. Inspired by Gabor pulse theory,
this paper presents a family of waveforms shaping multi-level
coded spreading (MCS) coefficients with a Gaussian envelope,
namely the Gaborized-MCS (G-MCS). These waveforms achieve
nearly optimal GB performance, reflecting the trend of current
optimization techniques to agnostically converge to such pulse
shapes. Numerical analyses characterize the GB of the proposed
signals across varying receiver bandwidths and compare them to
optimized waveforms and legacy binary offset carrier modula-
tions largely adopted in Global Navigation Satellite Systems.

Index Terms—Waveform design, Gabor bandwidth, pulse shap-
ing, optimization algorithms, Global Navigation Satellite Systems
(GNSS).

I. INTRODUCTION

In radar and radionavigation systems based on ranging
codes, accurate code phase offset estimation enables the
measurement of a signal’s Time-Of-Arrival (TOA) and time
difference of arrival (TDOA), which are crucial for determin-
ing target’s location or receiver’s position and local clock
offset, referred hereafter as receiver state. To achieve this,
signal design should be tailored to minimize the estimation
uncertainty of such observables.

Alongside the use of properly-designed ranging code se-
quences [1], optimizing their chip shaping is equally important
to enhance overall signal tracking performance [2], [3].

Traditionally, radionavigation systems, such as Global Nav-
igation Satellite System (GNSS)s, have relied on rectangular
chip shaping, applied to Binary Phase Shift Keying (BPSK)
modulation and, more recently, on subcarrier modulations
known as binary offset carrier (BOC). As highlighted in [4],
these modulations can be regarded as special cases of multi-
level coded symbol (MCS). To ensure theoretical generality,
this work specifically addresses MCS modulations, particularly
those with rectangular subchip shaping.

A method for optimizing chip shaping in MCS modulations
with rectangular subchips has been proposed in the litera-
ture [5], [6]. This approach minimizes the Cramér-Rao lower
bound (CRLB) for code phase offset estimation, representing
the theoretical lower bound on unbiased estimation error in
high carrier-to-noise power density ratio conditions, or main-
lobe dominated regimes [7]. The method exploits the inverse
quadratic relationship between the CRLB and the Gabor

bandwidth (GB), formulating an optimization problem that
seeks to maximize the latter. However, this numerical approach
does not yield a closed-form expression for the optimal pulse
shape. This limits the control on signal design and may lead
to degenerate, unsuitable shaping waveforms.

Inspired by Gabor pulse theory [8], this study introduces a
novel family of waveforms named Gaborized-MCS (G-MCS).
These waveforms leverage a parametrized Gaussian envelope
inherent in Gabor pulses to determine the amplitudes of the
rectangular subchips shaping each chip of the ranging code.

The resulting waveforms achieve nearly optimal GB per-
formance, supporting the notion that current optimization
techniques inherently converge toward similar waveforms.

The paper is structured as follows: Section II covers base-
band signal definition, CRLB, GB, and MCS modulations.
Section III details G-MCS construction and key parameters.
Section IV compares GB performance with optimized MCS.
SectionV summarizes findings and future directions.

II. BACKGROUND

In the following, modernized GNSS is assumed as valu-
able case study of radionavigation systems relying on spread
spectrum signals. The baseband signal, as processed by the
receiver, can be modeled as

r(t) =
p
2PR

X

n

cn x(t+ nTc � ⌧) + !(t) (1)

where PR denotes the received signal power, {cn}Nn=1 rep-
resents the Pseudo Random Noise (PRN) ranging codes [4],
which are deterministic binary sequences (cn = ±1) with
autocorrelation properties similar to random sequences [9] and
known to both the transmitter and receiver. The function x(t)
is the chip waveform, Tc is the chip duration, and ⌧ represents
the code phase offset between incoming signal and locally-
generated replicas, measured in the receiver’s time reference
frame. Finally, !(t) accounts for additive Gaussian noise, with
a constant power spectral density over the receiver bandwidth
of N0/2 W/Hz.

In GNSS positioning, the receiver aims to estimate the
code phase offset, ⌧ , as it is essential for constructing ToA
observables, which in turn are required to the receiver state
estimation. Assuming that the receiver’s algorithm imple-
ments an unbiased estimator, the final estimation accuracy is
fundamentally constrained by the CRLB, which provides a
theoretical lower limit on the variance of the estimation error
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for any unbiased estimator. In the specific case of code phase
offset estimation, the variance of the estimation error satisfies

�⌧ � 1

8⇡2 C
N0

T�2
(2)

where � is namely the signal root-mean-squared (RMS) band-
width, also referred to as the GB, and is defined by

� =

vuut
R +1
�1 f2|X(f)|2df
R +1
�1 |X(f)|2df

(3)

where X(f) is the Fourier transform of the considered time
chip waveform [10]. From (2) and (3), it follows that the
CRLB directly depends on the choice of chip waveforms x(t).
This dependency can be exploited in signal design to optimize
signal properties, using the CRLB as a performance metric. In
particular, the relationship between (3) and (2) suggests that
designing waveforms to maximize the GB leads to a lower
variance in the code phase offset estimates [11].

The GB in (3) emphasizes higher-frequency components by
weighting the signal Power Spectral Density (PSD) with the
square of the frequency. As a result, signals characterized by a
PSD concentrated near the band edges achieve a lower CRLB.

Additionally, the GB provides insight into the shape of
the correlation peak in the code phase offset domain of the
Woodward ambiguity function, also known as the Cross-
Ambiguity Function (CAF) [12]. A denser PSD near the chan-
nel boundaries results in a sharper correlation peak, improving
resolution in code phase offset estimation.

A. Multilevel Subcarrier Modulations

Historically, BPSK was the first modulation adopted in
satellite navigation systems, characterized by a rectangu-
lar waveform x(t). This waveform is generally denoted as
BPSK(n), where n indicates that the signal has a chip rate
of n⇥f0, with f0 = 1.023Mcps being the reference chip rate
of the GPS C/A signal.

Over time, modern GNSS signals have adopted more ad-
vanced modulation schemes, including BOC and its variants.
A BOC waveform is typically denoted as BOC(m,n), where
m and n are defined as m = Rsc/f0 and n = Rc/f0,
respectively, whereas Rsc represents the subcarrier frequency
and Rc the chip rate of the ranging code. The ratio ⇠ =
m/n determines the number of subcarrier cycles per code
chip. Depending on whether the subcarrier is defined as
sign(sin(2⇡fsct)) or sign(cos(2⇡fsct)), the BOC waveform
is classified as sine-BOC or cosine-BOC, respectively. For
brevity, we will refer to sine-BOC as BOCS(m,n) and cosine-
BOC as BOCC(m,n) from now on.

Both BPSK and BOC can be interpreted as special cases of
the more general class of MCS signals [4]. In an MCS signal,
each chip of the spreading code is divided into K subchips
of equal duration, each characterized by a specific amplitude
sk and waveform shape wk(t). More formally, the transmitted
waveform can be expressed as

x(t) =
KX

k=1

sk wk(t� kTsub) (4)

where sk represents the amplitude of the k-th subchip, wk(t)
defines the waveform shape of each subchip, K is the number
of subchips per chip, and Tsub = Tc/K denotes the subchip
duration, with Tc being the chip duration.

From (4), it can be observed that BPSK represents the
special case where K = 1, meaning that each chip consists
of a single subchip with unit amplitude (s1 = 1) and a
rectangular waveform w1(t). Similarly, BOC modulation can
also be expressed using (4). For instance, the BOCS(1, 1)
modulation corresponds to the case where K = 2, meaning
that each chip is divided into two subchips with alternating
amplitudes (s1 = +1, s2 = �1), while still using a rectangular
waveform.

An MCS modulation, is denoted as MCS(s, Rc), where s =
[s1, s2, . . . , sK ] is the amplitude vector, which consists of the
amplitudes of the K subchips within a chip. The generalized
PSD for such modulation schemes is defined through (5) [4].

B. MCS optimization
Within the MCS framework, [5], [6] developed a mathe-

matical method to determine the optimal chip waveform x(t)
that maximizes the GB. For this purpose, they formulated the
following optimization problem:

8
>>><

>>>:

argmax
s

R �r
2

� �r
2

f2|X(f)|2df
R �r

2

� �r
2

|X(f)|2df

s.t. ksk = 1

(6)

where �r denotes the front-end bandwidth of the receiver. In
[5], the authors specifically considered a rectangular subchip
shape w(t) and, for a given K, derived the optimal amplitudes
that maximize the GB. The resulting solution ensures that no
other MCS signal with same number of subchips can attain
a greater GB under the given receiver front-end bandwidth
constraint.

C. Gabor pulses
Gabor functions, also referred to as Gabor waveforms,

pulses, or wavelets, offer several advantages in the context
of code phase and frequency offset estimation, particularly in
radar and sonar applications. The Gabor pulse shows unique
sharpening and confining properties of the CAF correlation
main lobe, which in turn reduces the uncertainty in simul-
taneous code phase and frequency offset estimation. The
continuous-time complex definition of the Gabor pulse is
reported in [13], as

g(t) = e
�(t�t0)2

(2�2
t ) ej2⇡fsc(t�t0) (7)

where t is the time variable, t0 is the center of the Gaussian
envelope along the time axis, �t is the Gaussian Root-Mean-
Square (RMS) width, and fsc is the fundamental frequency of
the modulating sinusoidal carrier signal.
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GMCS(s,Rc) = Rc

sin2
⇣

⇡f
KRc

⌘

(⇡f)2

(
2

KX

`=1

KX

m=1

s`sm cos


(m� `)

2⇡f

KRc

�
�

KX

`=1

s2`

)
(5)

In the continuous-time domain, the minimal area of the
time-frequency representation of a Gabor pulse is dictated
by the uncertainty principle. This principle states that there
is an inherent trade-off between the time and frequency
resolutions of a signal. A more localized signal in time will
result in a broader frequency bandwidth, and vice versa. The
Gabor pulse effectively strikes a balance between these two
properties, achieving a high degree of both time and frequency
localization.

According to [14]–[16], a discrete-time, discrete-amplitude
Gabor pulse does not necessarily preserve the aforementioned
properties of the CAF correlation main lobe as its continuous-
time, continuous-valued counterpart. The discrete pulse is
described by a finite number of time and amplitude values,
which limits its ability to perfectly replicate the behavior of
the continuous pulse [16]. Although this level of suboptimality
exists, we assume that the discrete definition still approximates
its continuous-time counterpart, especially in the context of
numerical signals. In this regard, we propose using a discrete
Gabor function to shape the chips of the spreading code.

III. METHODOLOGY

A. Gaborized Multilevel Subcarrier Modulation

By leveraging (7), the generation of a discrete Gabor pulse
involves two main parameters: the number of subchips K, and
their corresponding amplitude s which are determined by the
Gaussian envelope’s RMS width described by �t.

We leverage the generation of a sinusoidal subcarrier, which
forms the basis of BOC modulation. This subcarrier is then
modulated by the amplitude of a Gaussian envelope evaluated
at specific time instants.

• The chip duration is fixed as Tc = 1
Rc

, where Rc

represents the chip rate (e.g., Rc = 1.023 Mcps for the
nominal GPS L1 C/A code).

• The number of subchips K determines the subcarrier used
in the Gabor pulse. Specifically, K is related to the BOC
parameter by: K = 2⇠ = 2(m/n). For instance, to con-
struct a G-MCS with eight subchips, the sinusoidal sine
subcarrier used in a BOCs(4, 1) modulation is employed
for the quadrature component, while the cosine subcarrier
is used for the in-phase component.

• To extract the K amplitude values associated with the
subchips, we analyze the continuous-time Gabor pulse
and identify the time instants at the nulls of the deriva-
tive of the sinusoidal subcarrier. The amplitudes of the
subchips are then determined by evaluating the Gabor
pulse at these time markers.

A sample in-phase and quadrature continuous-time Gabor
pulse, along with its corresponding unit-norm G-MCS chip,

is presented in Fig. 1. This G-MCS chip is obtained through
the continuous-time Gaborization of a fundamental BOC(4, 1)
scheme, where the Gaussian envelope RMS width is set to
�t = Tc/4. The circular markers in Fig. 1a and Fig. 1b indicate
the amplitudes of the individual subchips.

We refer to the proposed Gaborized modulation schemes as
G-MCS(�t,m, n) in the following discussion.

B. Comparative analysis

A comparative analysis is performed by evaluating the
Gabor bandwidth for G-MCS modulations and comparing it
with the generating BOC and optimized MCS [6]. The signal
PSD, essential for computing the GB through (3), is obtained
using the analytical formulation presented in (5).

IV. RESULTS

Fig. 3 presents four heatmaps comparing the gain (in dB-
MHz) in terms of GB between four G-MCS modulations and
their corresponding BOC modulations in Fig. 3a and Fig.
3c, as well as against the upper bound imposed by MCS
modulations for a given number of subchips, as proposed in
[6], in Fig. 3b and 3d. The G-MCS modulations under analysis
are G-MCS(�t, 3.5, 1) (7 subchips), G-MCS(�t, 4, 1) (8 sub-
chips), G-MCS(�t, 6, 1) (12 subchips), and G-MCS(�t, 6.5, 1)
(13 subchips).

Fig. 3a and Fig. 3b show heatmaps for an even number
of subchips, while Fig. 3c and Fig. 3d correspond to an odd
number of subchips.

Each heatmap consists of four column blocks, where each
block represents a specific double-sided front-end bandwidth:
10 MHz, 20 MHz, 40 MHz, and 60 MHz. Each block contains
four columns, each corresponding to a specific m,n pair and
the selected subcarrier (either sine or cosine).

The first row of each heatmap is separated from the others,
as it contains the reference GB value (in MHz) for the given
front-end bandwidth, corresponding to either the respective
BOC modulation or the MCS modulation with the same
number of subchips. The remaining rows of the heatmap
display various G-MCS modulations with different values of
�t for the Gaussian envelope.

The heatmaps use a grayscale color scheme: darker gray
indicates a loss, medium gray represents a gain, and lighter
gray denotes comparable performance. The numbers in bold
represent the maximum gain for each column.

In the first place, it can be noted that there is an improve-
ment over the BOC modulation in almost all scenarios. When
�t approaches Tc, the ”filtering” contribution of the Gaussian
envelope is minimal, which is why the modulations in the
first two rows of the heatmap in Fig. 3a and Fig. 3c have
values equal to zero. The most significant losses across all
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Fig. 1: Continuous-time (upper) to discrete-time (lower) view of in-phase and quadrature components of a sample G-MCS,
i.e., G-MCS(Tc/4, 4, 1) with Tc = 1/(1.023⇥ 106).

heatmaps occur for the m = 6 and n = 1 pair in the 10 MHz
front-end bandwidth. However, this is explainable since this
bandwidth does not encompass the two PSD main lobes, which
are centered at ±6MHz, respectively (refer to Fig. 2). Fig.
2 shows the PSDs for the cosine G-MCS modulations under
analysis. The effect of the main lobe positions can be observed,
which follow the applied subcarrier. Regarding the comparison
with the best MCS, it can be observed that the upper bound is
not exceeded, but a very close approach is achieved with nearly
every G-MCS configuration, and in some cases, identical
performance is reached (at least up to the second decimal
place). Among all the configurations, the ones with �t = Tc/3
and �t = Tc/4 show the best performance. Fig. 4 shows
the behavior of the GB as the front-end bandwidth increases
up to 60 MHz for the four G-MCS modulations under test
with �t = Tc/3. These configurations exhibit nearly optimal
performance across all bandwidths, with slightly lower values
compared to the upper bound defined by the optimized MCS
from [6]. From both Fig. 3 and Fig. 4, it can be observed that,
regardless of whether the G-MCS modulation is in phase or
in quadrature, the resulting GB performance is essentially the
same. Additionally, for bandwidths greater than 11.5MHz, all
G-MCS modulations follow a trend fully consistent with BOC
modulations, but with a consistent improvement in GB values.
The comparison with the optimized MCS further demonstrates
the near-optimal GB performance of the proposed G-MCS
modulations.

V. CONCLUSION

This work explores the use of discrete Gabor pulses to de-
fine G-MCS subcarrier modulation for radionavigation signals,
referred to as G-MCS. The proposed modulation shows no
degradation of performance w.r.t. to legacy BOC modulations
employed in GNSS. More importantly, it achieves near-optimal
performance when compared to the upper bound defined
in [6], by disclosing a closed form suitable to numerical
signal generation. This preliminary study lays the groundwork
for characterizing G-MCS based on further key performance
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Fig. 2: PSD of G-MCS(Tc/3, m, n) with n = 1 and m 2
{3.5, 4, 6, 6.5}, and BPSK(1).

metrics, including out-of-band unwanted emissions, spectral
separation coefficient, multipath and interference error en-
velopes, and correlation loss in presence of signal distortions.
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(d) Odd number subchips compared to optimized MCS

Fig. 3: Gain in terms of GB for G-MCS modulations with both even and odd numbers of subchips, compared to BOC and
optimized MCS.
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