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Abstract—GNSS is recognized as a game changer for the
next railway signaling solutions since July 2021 by the EU
Parliament. However, the satellite-based technology still faces
major issues before full introduction. For safety critical functions,
the positioning on-board unit needs to show its compliance
with very stringent requirements. To ensure position availability
and accuracy, solutions will result from a multisensor fusion
(GNSS, IMU, odometer) supported by the use of digital maps and
some barriers for error mitigation such as Fault Detection and
Exclusion techniques. Main constraints for GNSS performance
is caused by track surroundings (building, vegetation, bridges or
tunnels) but interference also needs to be detected and managed
as the train has to travel in public areas, close to highways
or other infrastructure where jamming events in particular
are now frequently observed. In this paper, based on recent
development for railway applications, we outline a concept for
a smart adaptation and mitigation of these effects, merging
work performed for context detection, interference detection and
classification and different weighted least squares. The different
contributions will be described as well as the concept proposed.

Index Terms—GNSS, land transport, satellite signal propaga-
tion, WLS, context detection, interferences.

I. INTRODUCTION

The integration of GNSS-based solutions in safety-critical
land transport applications has been studied for 25 years.
However, GNSS penetration in some transport domains, such
as railways, remains difficult due to GNSS receiver weakness
in areas of dense traffic, where they are affected by masking
obstacles and propagation difficulties caused by the built en-
vironment, trees and trenches. There is also interference and a
high level of required performance. Safety-critical applications
such as signalling require a high level of confidence in the
information provided and the ability to demonstrate safety.
Solutions under development rely on combinations of sensors
and barriers to detect and mitigate threats. In rail, the roadmap
to GNSS integration also comprises complementary solutions
dedicated to mapping threat events [1], which are particularly
useful in guided transport, but feature map solutions are
also being investigated for urban applications [2]. Through
its involvement in numerous projects, the University Gustave
Eiffel has developed several threat detection and mitigation

techniques. When combined, these techniques can form an
adaptive, robust navigation chain for such applications. These
techniques will also be of primary interest in new application
contexts, such as those developed in the Pods4Rail project,
which aims to develop an innovative rail-based door-to-door
transport concept. The autonomous vehicle (pod) consists of
a propulsion unit (carrier) and transport containers (transport
unit). As the pod changes from one mode of transport to
another, it will face different constraints and requirements.
When stationary, the pod requires a moderate level of accuracy
in its information. When on rails, however, its position can
be used for signalling or traffic management, in which case
it will need to reach a high integrity level. The possibility
of an adaptive solution is therefore of great interest. In this
paper, these different blocks and how they can be combined
to provide this concept are briefly summarized. The first
section of the paper will describe the main threats encoun-
tered by a train in its operational environment. The second,
will summarize the different blocks that compose the chain.
The last one will illustrate some capacities of these blocks
on accuracy improvement before discussing the concept and
opening perspectives.

II. THE ROLE OF THE ENVIRONMENT ON GNSS-BASED
LOCALIZATION PERFORMANCE

The requirements for land transport differ from those seen
in aeronautics due to different operational constraints, as well
as the surrounding environment and additional environmental
factors that considerably degrade user performance. Indeed,
as is well documented in the literature, vehicles circulate in
harsh environments such as urban areas, trenches and areas
with trees alongside the track, not to mention going through
tunnels.

A. Local masking effects

As GNSS-based positioning relies on measuring the time
it takes for a signal to propagate, the pseudorange distance
is optimally estimated when the signal is received in a LOS
(Line of Sight) state. However, obstacles around the antenna
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can lead to a Non-LOS state if the direct path is blocked
or cause multipath effects whereby signal echoes degrade the
correlation peak used for ranging estimation [3]. Multipath and
NLOS states have been extensively investigated in the litera-
ture because they are one of the main sources of positioning
errors in such environments. This affects different blocks of
the receiver chain, from the antenna to the estimation block,
including receiver signal processing. The recent extension of
use of machine learning has led to a number of papers analyzed
in [4]. However, the impact of trees on signal reception has
received comparatively little attention to date, despite being
an important topic. [5] presented a first comparison of errors
across different environments open sky, urban and vegetated
conditions. The study revealed that pseudorange errors are
more widely distributed in vegetation than in the open sky,
but have a zero mean. In contrast, urban environments show
pseudorange errors and the error distribution is slightly larger
in vegetated environments than in open sky. More recent
studies [6] and [7] analysed kinematic data and video-based
classification of satellite states in order to describe signal
reception through trees.

B. Interferences

GNSS interference has been extensively studied and doc-
umented in the aeronautical domain. Various reports and
research articles have highlighted the risks associated with
GNSS interference in aviation, particularly regarding its im-
pact on navigation, landing procedures, and surveillance sys-
tems.

• Jamming refers to an intentional form of interference
that induces disturbances in the GNSS band, causing
performance degradation or can even entirely block the
receiver from acquiring satellite signal.

• Spoofing involves the broadcast of counterfeit satellite
signals to trick the GNSS receiver, leading to inaccurate
estimation of position, navigation and timing information.

The concerns of GNSS interference have expanded beyond
aviation, gaining attention in other transportation sectors. In
the automotive industry, particularly within Intelligent Trans-
port Systems (ITS), several studies are presented to explore
the impact of interference [8] [9]. This is also discussed in
rail [10] [11]. As GNSS applications expand into safety-critical
domains, addressing interference has become an essential topic
for ensuring reliable and safe operations.

III. LOCAL EFFECTS DETECTION SCHEMES

Now that the different main threats to GNSS-based fail
safe train positioning have been introduced, this section will
provide an overview of the blocks available in our team that
comprise a non-exhaustive but extendable cascading scheme
for detection and mitigation, as shown in Fig. 1. The following
mechanisms will be introduced: Interference detection and
classification at signal level; CMC-based detections on observ-
ables (CMC is classically used to characterise multipath); or
C/N0-based detections on observables (C/N0 characterises the
power of the received signal); camera-based satellite state of

reception classification; GNSS-based context detection; FDE
and Weighting Least Squares.

Fig. 1. Scheme of the cascading concept.

A. Context-detection

As presented in section II, the environment of reception
plays a major role in land transport application and GNSS per-
formance. This is the reason why context-aware GNSS-based
navigation has been widely studied in particular using different
machine learning techniques, each leveraging specific features
to improve classification accuracy. Traditional machine learn-
ing models, such as Support Vector Machines (SVM) and
Multi-Layer Perceptrons (MLP), primarily focus on statistical
GNSS features (number of visible satellites (NVS), carrier-
to-noise ratio (C/N0), azimuth and elevation angles, dilution
of precision (DOP), and multipath indicators), making them
effective for basic environmental classification [12], [13].
On the other hand, Convolutional Neural Networks (CNNs)
specialize in spatial feature extraction, using time-series GNSS
signals, C/N0 variations, satellite positioning data, and GNSS
signal attenuation characteristics to enhance recognition in
complex environments [14], [15], [16]. Meanwhile, Recurrent
Neural Networks (RNNs), including LSTM (Long Short Term
Memory) and GRU (Gated Recurrent Unit), are designed to
capture temporal dependencies, analyzing C/N0 changes over
time, satellite visibility history, and positioning error trends,
making them well-suited for dynamic navigation scenarios
[17], [18]. In addition to these methods, environmental context
detection has been further refined by integrating vision-based
enhancements. For instance, in [19], a GNSS-based method
incorporating fisheye camera images was proposed to classify
environments using satellite LOS (Line-of-Sight) and NLOS
(Non-Line-of-Sight) using SVM model.

Our proposed solution extends the work of [19] by introduc-
ing an additional category, VEGE (Vegetation), and modifying
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the model to LSTM to better capture temporal dependencies,
refining the feature vector to :

v(t) =
[
NSVk, µCN0,k, elevk, resk

]
(1)

with k ∈ {LOS,NLOS,VEGE}, SLOS, NSVk, is the num-
ber of visible satellites in each state; The variable µCN0

signifies the mean C/N0. The elevk denotes the average
elevation angle, and the resk represents the average residual
error.

B. Vision-based satellite state classification

Since [20], we develop some image segmentation algorithms
for satellite state of reception classification. Our most recent
developments rely on fish-eye images and neural networks al-
lowing a 3 class prediction: LOS/NLOS and satellite received
through vegetation [7]. We also investigate the interest of
considering an ”uncertain class” in order to represent uncertain
predictions and limit classification mistakes [21].

C. Observable-based detections

In the framework of the ERSAT-GGC project, we have
developed a methodology for event detections based on the
modeling of C/N0 nominal behavior and the definition of a
threshold [22]. The model developed relied on the differenced
C/N0 between frequencies [23] and was elevation dependent,
relying on the principle that, in presence of significant multi-
path, the C/N0 behaviors not only deviate from the nominal
values, but also differ in frequencies. The limits of the method
are that, first, a calibration has to be performed depending
on the equipment and its installation, and then, that dual
frequency reception is required. Another indicator based on
observables and published by DLR [24] is the CMC (Code
Minus Carrier). CMC allows to isolate multipath error thanks
to a combination of code and carrier phase measurements
that removes all common error terms in code and carrier
phase measurements after corrections of ionospheric and tro-
pospheric delays.

D. Interference detection and classification at signal level

With the spreading of interference events, it becomes cru-
cial to determine whether the receiver is operating under
interference-free conditions or not. Several detection methods
have been presented in the literature that rely on different
observables and metrics throughout the receiver processing
chain. These methods include Automatic Gain Control (AGC)
monitoring, statistical analysis of digital IQs, spectral monitor-
ing or C/NO-based detector. Recently, machine learning-based
approaches have gained significant attention for interference
detection and recognition [26] [27] [28].
Our work [29] has expanded the previous work in detection
and classification with deep learning techniques. We explored
ResNet and VGGNet architectures to tackle this challenge.
Unlike many earlier studies that focused on interference cases
with relatively distinguishable statistical characteristics, our
work concentrated on different forms of frequency-modulated
chirp-like signals with diverse patterns representing frequency

evolution over time. We developed a dataset comprising 11
distinct jamming classes including Linear, Quadratic, Saw-
tooth, Triangular, S-curve, and Sigmoid among others. To
introduce diversity within each class, we changed the signal
parameters such as the start frequency, end frequency, sweep
rate and relative jamming power. Some signals also incorpo-
rated additional parameters to modify the shape of the curves.
Our approach utilized spectrograms images providing time-
frequency representation as input to the network. The database
consisted of a substantial collection of 148,500 sample images
that participated in the testing, training and validation phases.
Both ResNet and VGGNet models showed much similar
performance, achieving an average accuracy of around 98%,
with individual accuracy reaching as high as 100% in some
cases.

IV. RESULTS

This section illustrates some of the blocks using the dataset
provided by [30]. This paper analyses the results in terms of
accuracy performance. However, further work will be needed
to assess their impact on integrity performance to achieve
safety-related performance.

A. Dataset

The dataset was collected in February 4, 2022 by ISAE-
Supaero in the surrounding of Toulouse, France [30]. A
Ublox EVK-M8T receiver and a NovAtel VEXXIS GNSS-804
antenna were utilized. Data were collected at a rate of 5 Hz
using the ROS platform. In this paper, we use GPS satellites
only. As the dataset does not contain IQs or interference
identified effect, this section will concentrate on detections
of context, CMC and the effect of WLS on accuracy.

B. Observable-based detections

The database only contain mono frequency measurements.
Thus the C/NO-based detection presented above is not applica-
ble and we consider here the CMC-based multipath estimation.
Fig. 2 shows CMC variations vs elevation for two different
satellites (Sat 15 in green, 5 in blue) and highlights that low el-
evated satellites face more multipath than highly elevated ones.
For a CMC-based preliminary fault detection and exclusion,
a threshold above which measures will be excluded shall be
defined considering an exhaustive calibration dataset recorded
in an open sky area for nominal CMC description [24]. As
the dataset we used covers the full range of satellite elevations
but in every mixed environment and thus does not allow open
sky calibration, for fig. 2, the 3σ threshold is computed based
on the computation of elevation-based sigmas on the whole
dataset and as a mean constant value for all elevation angles for
concept illustration. With this detection, larger multipath errors
are excluded from the computation but one shall consider that
satellite state effects on remaining satellite still remain.

C. Weighted Least Squares

In the literature, the implementation of Weighted Least
Squares (WLS) has been investigated to mitigate local errors
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Fig. 2. CMC variations vs elevation for two different satellites. Red dots are
CMC detected over an averaged 3σ threshold.

and enhance reliability of GNSS-based solutions. In [31], we
have combined both the satellite state of reception and ob-
servable criteria and in [7] we compared the performance with
different weighting schemes and depending on the reception
context. WLS can be a way to strongly deweight multipath
or NLOS signals as do the Additive weight [32] or the
CAPLOC2013 one. Preliminary analyses show that we have
not yet defined a single weighting scheme capable of achieving
optimal accuracy everywhere, but show the interest of adapting
schemes to the environment. In our data, a LOS/NLOS-based
WLS allows us to reduce the median accuracy from 7.18 m
(C/N0-based model) to 5.95 m for example. However, the same
model underperforms in a vegetation area. Bearing in mind
that the models can be refined, this still suggests that the
different levels of detection and models are complementary
rather than redundant.

D. Context detection

The LSTM model introduced in section III.A is trained
on a dataset with four identified classes: urban, open sky,
urban canyon, and vegetation, manually labelled and where
urban canyon is mainly composed of building when urban
can be a mix of building and some trees. The model is
applied to the complete trajectory. Fig. 3 shows the resulting
map. The model achieved an overall accuracy of 92% with
optimized hyperparameters, demonstrating its effectiveness in
context detection. While the performance is strong, some
misclassifications are observed in particular between trees
and urban that face the highest misclassifications (5 to 9%)
probably because of similarities in their descriptions. This
indicates room for improvement in refining class definitions
to limit overlapping, trajectory analysis and increasing the
model’s adaptability to different environments.

This context detection allows us to refine previous analysis
and weighting models relying on the satellite state of reception
only [7]. Indeed, fig. 4 distinguishes the CMC values for open-
sky LOS and LOS in an urban canyon area and clearly illus-
trates that the satellite state shall be considered with its context
environment. In [33], context-aware stochastic functions are
defined from function fitting between C/N0 and median code
residuals. With our different tools, our proposal is to extend it
and consider both context and satellite state for the definition
of adaptive weights. Weight will then be expressed as 1

σ2 with

σ(i, k) = f(SatState(i, k),Env(k)) (2)

Fig. 3. Context map.

SatState = {LOS, NLOS, VEGE} (3)

Env = {urban, open sky, trees...} (4)

where i is the satellite number, k the epoch.

Fig. 4. CMC variations of LOS satellites in an urban canyon and in an open
sky area.

In its complete version, as refered to fig. 1, the positioning
estimator will rely on this context detection block to select the
optimal weighting schemes (cf section C) and thus provide a
context-dependent optimal position estimation.

V. CONCLUSIONS AND PERSPECTIVES

This paper summarises the robust GNSS-based positioning
solutions developed or implemented by our team for use in
varying transport environments. The different layers applied
aim to increase robustness to interference, local effects such
as multipath or NLOS reception and take benefit of the
recent progresses on context awareness to enhance position
accuracy. The concept comprises a first layer dedicated to
signal interference detection and, if necessary, mitigation. The
cleaned signals are then processed by the receiver, and a fault
detection and exclusion scheme is applied to the observables.
The objective is to eliminate outlier measurements. In parallel,
combining these observables with vision will enable us to

863



classify the signal reception context. The final step uses both
contextual knowledge and each satellite reception state to
optimise the use of the received signals using a weighted least
squares approach. The first studies demonstrate the potential
accuracy of the concept, but the full concept has yet to be
evaluated. It will also require the integration of fault detection
mechanisms and integrity monitoring [25]. More studies will
evaluate the complementarity and/or redundancy if there is,
of the proposed layers. Finally, the scenario to be developed
will depict the pod travelling successively by road or rail with
either informative or critical safety requirements throughout
the journey and will have to evaluate how such a scheme can
also enhance integrity.
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[8] S. Kocher, J. Hansen, and A. Rügamer. ”GNSS Interference Localization
for Vehicular Jammers using low-cost COTS Sensors.” 2024 Interna-
tional Conference on Localization and GNSS (ICL-GNSS). IEEE, 2024.

[9] S. Dasgupta, K. H. Shakib, and M. Rahman. ”Experimental Validation
of Sensor Fusion-based GNSS Spoofing Attack Detection Framework
for Autonomous Vehicles.” arXiv preprint arXiv:2401.01304 (2024).

[10] R. Ehrler, A. Wenz, S. Baumann, P. Mendes, N. Dütsch, A. Martin, and
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