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Abstract—Continual learning (CL) is crucial for the adaptation
of neural network models to new environments. Although outper-
forming weight-space regularisation approaches, the functional
regularisation-based CL methods suffer from high computational
costs and large linear approximation errors. In this work, we
present a new functional regularisation CL framework, called
MCFRCL, which approximates model prediction distributions
by Monte Carlo (MC) sampling. Moreover, three continuous dis-
tributions are leveraged to capture the statistical characteristics
of the MC samples via moment-based methods. Additionally,
both the Wasserstein distance and the Kullback–Leibler (KL)
distance are employed to construct the regularisation function.
The proposed MCFRCL is evaluated against multiple benchmark
methods on the MNIST and CIFAR datasets, with simulation
results highlighting its effectiveness in both prediction accuracy
and training efficiency.

Index Terms—Continual learning, Functional regularisation,
Monte Carlo sampling,

I. INTRODUCTION

Continual learning (CL) [1], [2] refers to the ability of a
neural network model to learn new tasks without forgetting
previously acquired knowledge. This capability is especially
valuable in dynamic environments where data evolves over
time, eliminating the need to retrain models from scratch.
For example, in healthcare, the CL supports the integration of
new patient data into models without retraining, ensuring that
the diagnostic systems stay current while safeguarding patient
privacy [3]. Also, the CL is essential for autonomous driving
systems to adapt to dynamic environments, such as different
weather conditions [4]. Furthermore, a continual learning
robot can continuously acquire new skills from unstructured
real-world environments [5]. However, CL methods suffer
from catastrophic forgetting [2], where a model tends to lose
previously learned knowledge when adapting to new tasks.

To mitigate catastrophic forgetting, one presents weight-
space regularisation CL methods, constraining the changes of
model parameters during the acquisition of new knowledge.
For instance, the Elastic Weight Consolidation (EWC) [6],
[7] leverages the Fisher information matrix to guide weight
regularisation. Also, the synaptic intelligence (SI) [8] con-
strains parameters according to their importance, which is
evaluated via the entire training trajectory. Further, the CL
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method based on the Riemannian walk combines the regu-
larization terms from SI and EWC, merging their respective
advantages [9]. By contrast, the variational continual learning
(VCL) [10] approximates the weight posterior distributions by
variational inference (VI) [11], [12]. However, the complex
relationship between model parameters and predictions makes
the parameter-based regularisation ineffective in addressing
catastrophic forgetting.

To address the limitations of weight regularisation, func-
tional regularisation-based CL methods have been introduced,
focusing on the intermediate or final output of neural net-
works. For instance, the functional regularisation for contin-
ual learning (FRCL) [13] combines inducing point Gaussian
process (GP) [14] inference with deep neural networks but is
limited to linear models. Also, the functional regularisation
of the memorable past (FROMP) [15] method utilises the
Laplace approximation [16] to estimate parameter variances,
the optimisation of which is then not allowed. In contrast,
the continual learning method via sequential function-Space
variational inference (S-FSVI) [17] approximates prediction
distributions by linearisation of a Bayesian neural network
(BNN) [18], providing flexible optimisation over parameter
means and variances. However, the S-FSVI requires high com-
putational costs and large storage space due to the calculation
of Jocabian matrices. Also, the adopted model linearisation
introduces approximation errors.

In this work, we present a Monte Carlo (MC) sampling-
based function-regularisation CL (MCFRCL) framework. The
motivation for this choice is twofold. 1) The MC approach
requires no Jacobian matrix computation and hence less com-
putational loads. 2) BNNs are highly nonlinear systems, and
compared with the linearisation method, the MC sampling
can produce more precise uncertainty prediction. For instance,
in nonlinear filtering, the classic extended Kalman filter [19]
linearises the nonlinear system to estimate the prediction
distribution. By contrast, the ensemble Kalman filter [20]
employs MC samples and achieves better estimation results.
The contributions of this work consist of:

1) To approximate the intractable model prediction dis-
tributions, we first obtain prediction samples from the
current model and the previous task model by MC
sampling;

2) The prediction distributions are then approximated by
three continuous densities, including Gaussian, Laplace
and Cauchy [21] distributions, the parameters of which
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are estimated by moment-based methods;
3) To construct a regularisation function, the Wasser-

stein [22] and Kullback–Leibler (KL) [23] distances
are deployed to measure the similarity between the
prediction distributions of the current and the previous
models;

4) In the simulation, the proposed method is compared
with various weight/function-space regularisation-based
methods on the MNIST and CIFAR datasets.

The remainder of this paper is structured as follows: We
begin, in Section II, with an introduction to the theoretical
background. Subsequently, Section III describes our proposed
MCFRCL method, and the simulation results are elucidated in
Section IV. Besides, Section V concludes this study.

II. THEORETICAL PRELIMINARY

In this section, we introduce the employed 3 continuous
distributions, followed by their corresponding moment-based
parameter estimators and Wasserstein/KL distances.

TABLE I
CONTINUOUS DISTRIBUTIONS

Notations Definitions
N (µ, σ2) Univariate Gaussian pdf with mean µ and vari-

ance σ2.
N (µ,Σ) Multivariate Gaussian pdf with mean vector µ

and covariance matrix Σ.
Laplace(a, b) Univariate Laplace pdf with location a and scale

b.
Cauchy(l, γ) Univariate Cauchy pdf with location l and scale

γ.

The definitions of the 3 densities are provided in Table I.
Assume x1:N = {xι|ι = 1, . . . , N} are N samples from
an univariate distribution. For the Gaussian distribution, its
parameters can be estimated by the mean and variance of
the samples. Similarly, the parameters of Laplace(a, b) and
Cauchy(l, γ) can be estimated as follows:

â = mean (x1:N ) , b̂ =
√
var (x1:N ) /2,

l̂ = median (x1:N ) , γ̂ = mad (x1:N ) ,
(1)

where the functions mean(.), var(.),median(.),mad(.) repre-
sent the mean, variance, median, and median absolute devia-
tion of the samples. Furthermore, the KL divergences between
two univariate Gaussian [24], Laplace and Cauchy [21] distri-
butions, denoted as DGKL, DLKL, DCKL, can be computed as
follows:

DGKL (p1||p2) = log
σ2

σ1
+

σ2
1 + (µ1 − µ2)

2

2σ2
2

− 1

2

DLKL (p1||p2) =
b1exp

(
− |a1−a2|

b1

)
+ |a1 − a2|

b2
+ log

b2
b1

− 1

DCKL (p1||p2) = log
(γ1 + γ2)

2 + (l1 − l2)
2

4γ1γ2
(2)

where p1, p2 are two univariate densities and their corre-
sponding parameters have the same subscripts. Besides, in
multivariate case, the square of Wasserstein distance [25]
between two Gaussian distributions, DGW, can be written as

D2
GW (p1, p2) = ||µ1 − µ2||22

+Tr

(
Σ1 +Σ2 − 2

(
Σ

1/2
1 Σ2Σ

1/2
1

)1/2
)
.

(3)

In comparison, the Laplace and Cauchy distributions do not
have a closed-form Wasserstein distance.

III. MCFRCL
A. The proposed continual learning framework

Assume a series of sequentially arriving tasks with index
t ∈ {1, . . . , T}, where the dataset for the t-th task is denoted
as Dt = (Xt,yt). Considering a neural network f = f (.;Θ)
with parameter Θ, the posterior estimation over the prediction
function f can be expressed as

p (f |D1:t) ∝ p (Dt|f) p (f |D1:t−1) .

However, p (f |D1:t) is generally intractable. In [17], the se-
quential variational inference method is employed for the pos-
terior approximation. Assume qt(f) is a functional variational
distribution driven by a weight-space variational distribution
qt(Θ), the posterior approximation can be achieved by max-
imising

F = Eqt(f) [logp (Dt|f)]− DKL [qt (f) ||qt−1 (f)] ,

where F is the evidence lower bound (ELBO) and
DKL [qt (f) ||qt−1 (f)] is the function-space regularisation
term. Since there is no closed-form solution to F , an approx-
imation is proposed in [17]:

F ≈ 1

Sβ

Sβ∑
i=1

logp
(
yβ |fβi

)
−

t−1∑
τ=1

Dτ∑
k=1

DKL

[
qt

(
fCτ

k

)
||qt−1

(
fCτ

k

)] (4)

where the prediction samples fβi = f (Xβ ;Θi), Xβ ∈ Xt

represents a batch of training data, Θi is the i-th sample
of qt(Θ) and Sβ is the number of the prediction samples.
Also, the number of model output dimensions for the τ -
th task is Dτ . Besides, the output of the k-th dimension is
fCτ

k =
[
f
(
XC

τ ;Θ
)]

k
, where the context set XC

τ consists of
NCτ

representative samples in the coreset of the τ -th task and
the coreset is sampled from the corresponding training dataset.

Considering the benefits of both the KL and Wasserstein
distance in functional regularisation [17], [26], we present our
new objective function as

F ≈ 1

Sβ

Sβ∑
i=1

logp
(
yβ |fβi

)
− λ

Nβ

NCτ

t−1∑
τ=1

Dτ∑
k=1

D
[
qt

(
fCτ

k

)
||qt−1

(
fCτ

k

)]
,

(5)
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where D ∈ {DGKL,DLKL,DCKL,DGW}. Also, Nβ is the
batch size, Nβ

NCτ
is used to alleviate the influence of the

unbalanced data points for different tasks, and λ is a scalar
regularisation coefficient. However, the functional regularisa-
tion term in equation (5) is intractable, as there is no closed-
form solution to the prediction distributions qt

(
fCτ

k

)
and

qt−1

(
fCτ

k

)
.

B. Approximation of the regularisation function

To handle the intractable prediction distribution, this section
employs an MC sampling-based method to approximate the
two variational distributions and then present an estimator for
D
[
qt

(
fCτ

k

)
||qt−1

(
fCτ

k

)]
as shown in Figure 1. There are

three steps:

Fig. 1. The flowchart of the approximation method of the MCFRCL functional
regularisation.

1) Monte Carlo sampling: With XC
τ , τ = 1, · · · , t − 1,

we draw samples
[
f
C+
τ

k

]
j

and
[
f
C−
τ

k

]
j
, j = 1, . . . , SC , from

qt

(
fCτ

k

)
and qt−1

(
fCτ

k

)
, respectively, where SC is the num-

ber of samples. Also,
[
f
C+
τ

k

]
j

= f
(
X;Θ+

j

)
,
[
f
C−
τ

k

]
j

=

f
(
X;Θ−

j

)
where Θ+

j ∼ qt(Θ) and Θ−
j ∼ qt−1(Θ).

2) Parameter estimation of the prediction distribution:
We approximate qt

(
fCτ

k

)
and qt−1

(
fCτ

k

)
by the continuous

densities in Table I. To reduce the computational cost, we
assume that all the components of fCτ

k are mutually indepen-
dent, and hence the high-dimensional functional distribution
approximation problem can be transformed into multiple one-
dimensional estimation tasks. Given fCτ

k,ξ, ξ = 1, . . . , NCτ
,

is the ξ-th element of fCτ

k , we have its corresponding
one-dimensional samples

[
f
C+
τ

k,ξ

]
j

and
[
f
C−
τ

k,ξ

]
j
. Then we ob-

tain the approximated univariate distributions q̂t

(
fCτ

k,ξ

)
and

q̂t−1

(
fCτ

k,ξ

)
, of which parameters can be estimated by (1).

Remark 1: The adopted moment-based estimators in (1) are
computationally efficient and differentiable, which is beneficial
to the model training process.

3) Calculation of the distance D: For D ∈ {DGKL, DLKL,
DCKL}, as the KL distance is additive for independent distri-
butions, we have

D
[
qt

(
fCτ

k

)
||qt−1

(
fCτ

k

)]
≈

NCτ∑
ξ=1

D
[
q̂t

(
fCτ

k,ξ

)
||q̂t−1

(
fCτ

k,ξ

)]
.

By contrast, for DGW, we have

D2
GW

[
qt

(
fCτ

k

)
||qt−1

(
fCτ

k

)]
≈

NCτ∑
ξ=1

D2
GW

[
q̂t

(
fCτ

k,ξ

)
||q̂t−1

(
fCτ

k,ξ

)]
,

(6)

which can be easily derived from (3).

C. Discussion

Our proposed method is mostly relevant to the function-
space regularisation methods, including FRCL [13],
FROMP [15], and S-FSVI [17]. The FRCL only treats
the weights of the last layer in a neural network as random,
whilst our method is applicable to fully stochastic models.
Also, compared with the FROMP, the MCFRCL achieves
an optimisation on both means and variances of parameters.
Furthermore, unlike the S-FSVI, which relies on linear
approximations, the MCFRCL utilises MC sampling. This
approach avoids the expensive computations of Jocabian
matrices and generally provides more accurate predictions,
especially in highly nonlinear systems.

IV. EMPIRICAL EVALUATION

In this section, we evaluate our proposed MCFRCL
method. Section IV-A and IV-B introduce the CL tasks
based on the (Fashion) MNIST and CIFAR datasets, re-
spectively. In Section IV-C and IV-D, various CL ap-
proaches are compared with four MCFRCL variants based on
{DGKL,DLKL,DCKL,DGW}, with benchmark results directly
sourced from [17] and [27] to ensure strong baselines.

A. Split (Fashion) MNIST setup

1) Split (Fashion) MNIST comprises five tasks, each involv-
ing binary classification between a pair of (Fashion) MNIST
classes. Also, both the MNIST and Fashion MNIST datasets
contain 60,000 samples for training and 10,000 samples for
testing, and all images are transformed into floating-point
numbers ranging from 0 to 1. 2) We employ single-head fully
connected neural networks with two hidden layers of size 256,
applying the ReLU activation function to all non-output units.
Besides, an Adam optimiser with an initial learning rate of
0.0005 (β1 = 0.9;β2 = 0.999) is adopted. 3) For the split
MNIST (S-MNIST) experiment, we evaluate two scenarios
with 40 and 200 coreset points per task, using 10 and 60
epochs, respectively. By contrast, for the split Fashion MNIST
(S-FMNIST) tasks, the coreset size is manually set to 200
points per task, with 5 epochs per task. Additionally, during
training on the first task, context points are generated by
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sampling each pixel uniformly from the range [0, 1]. For sub-
sequent tasks, context points are randomly selected from the
coreset. 4) For the first task, we assume a Gaussian functional
prior distribution with zero mean and a diagonal covariance
of magnitude 0.001. 5) Set Nβ=128, NCτ

=40, Sβ=30, SC=30.
Also, λ is selected from {10n, 3× 10n | n ∈ [−9, 7], n ∈ Z},
and we set the optimal result as the final result. Besides,
all (Fashion) MNIST experiments are conducted with 10 MC
runs.

B. Split CIFAR setup
1) Split CIFAR [15] comprises six tasks. The first involves

ten-way classification using the entire CIFAR-10 dataset,
while each of the remaining five tasks also involves ten-
way classification with classes selected from CIFAR-100. 2)
As in [17], we utilize a neural network consisting of four
convolutional layers, followed by two fully connected layers
and multiple output heads, one for each task. Also, we use the
same Adam optimiser as in the Split (Fashion) MNIST setup.
3) The coreset size is fixed at 200, with 120 epochs for the
first task and 50 epochs for the subsequent tasks. Also, for
the first task, context points are generated by sampling each
pixel uniformly from the range [0, 1], while context points are
randomly selected from the coreset in the subsequent tasks. 4)
For the first task, the functional prior distribution is assumed
to be Gaussian with zero mean and a diagonal covariance of
magnitude 1.0. 5) Set Nβ=512, NCτ

=50, Sβ=5, SC=30. Also,
λ is selected from {10n | n ∈ [−9, 2], n ∈ Z}, and we set
the optimal result as the final result. Besides, 5 MC runs are
given for all CIFAR experiments.

C. Performance on the MNIST dataset
In this experiment, the MCFRCL variants are compared

with various benchmark methods, including Online EWC [7],
SI [8], VCL [10], VAR-GP [28], FROMP [15], S-FSVI [17].
The prediction accuracy comparison is shown in Table II,
and the bold numbers highlight the best results. The optimal
MCFRCL consistently outperforms the other benchmark meth-
ods across all scenarios. Also, the optimal MCFRCL variant
varies depending on the datasets, while the MCFRCL with
DCKL produces worse estimation than the other variants. This
indicates that the heavy-tailed Cauchy distribution fails to
accurately capture the prediction uncertainty.

Also, Figure 2 presents the average training time per epoch
and required GPU memory of the optimal MCFRCL variant
and the S-FSVI. In all 3 scenarios, the MCFRCL requires less
training time and GPU memory as the S-FSVI suffers from
the computationally expensive Jacobian matrix.

Besides, the influence of the MC sample sizes SC and Sβ

are illustrated in Table III. Due to the computational cost, our
method is not scalable to large sample sizes. From Table III,
the small changes in sample sizes have little influence on
model performance.

D. Performance on the CIFAR dataset
The performance of the MCFRCL on the CIFAR dataset

is presented in Table IV. There are 2 scores, the prediction

TABLE II
COMPARISON OF PREDICTION ACCURACY (%) ON MNISTS

Method S-MNIST S-MNIST S-FMNIST
40 pts/task 200 pts/task 200 pts/task

Online EWC 19.95±0.28 19.95±0.28 19.95±0.28
SI 19.82±0.09 19.82±0.09 19.80±0.21

VCL 22.31±2.00 32.11±1.16 53.59±3.74
VAR-GP - 90.57±1.06 -
FROMP 75.21±2.05 89.54±0.72 78.83±0.46
S-FSVI 84.51±1.30 92.87±0.14 77.54±0.40

MCFRCL:
DGW 83.30±1.82 93.22±0.39 78.3±4.33
DGKL 82.43±1.31 92.63±0.44 79.15±1.02
DLKL 84.85± 0.88 92.88±0.42 73.76±6.23
DCKL 65.84±5.77 89.59±1.51 33.14±5.67

Fig. 2. Average training time per epoch and occupied GPU memory during
the last task.

accuracy and backward transfer (BT), and higher values are
better for both. The bold numbers indicate the best results. Our
proposed method produces more accurate predictions than the
weight-regularisation CL methods, including the EWC and the
VCL. However, compared with the functional regularisation-
based benchmarks, the MCFRCL performs worse, which sug-
gests the limitations of the MC sampling in capturing complex
statistical characteristics of large stochastic models. Also, the
MCFRCL has lower BT scores than the other methods, which
implies that it suffers serious catastrophic forgetting in this
scenario.

V. CONCLUSIONS

In this work, we introduce the MCFRCL, a novel functional
regularisation-based continual learning framework, where
three continuous distributions approximate the model predic-
tion distributions via MC sampling and moment-based meth-
ods. Also, both the Wasserstein and KL distances are deployed
to construct the regularisation function. Our proposed method
is compared with various benchmark CL frameworks. The
experiment results demonstrate that the MCFRCL achieves
better prediction accuracy and training efficiency on MNIST
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TABLE III
COMPARISON OF PREDICTION ACCURACY (%) WITH DIFFERENT

NUMBERS OF MC SAMPLES ON FMNIST

SC=5 SC=30 SC=100
DGW Sβ=10 79.02±3.81 77.50±4.68 78.08±4.12

Sβ=30 79.96±3.00 80.12±2.95 78.54±4.55
Sβ=100 78.21±4.44 77.33±4.60 79.01±3.83

DGKL Sβ=10 79.25±2.67 78.33±3.05 78.05±2.85
Sβ=30 79.22±2.77 79.33±0.70 78.35±2.78
Sβ=100 78.95±2.90 78.30±2.90 78.01±3.05

TABLE IV
PERFORMANCE COMPARISON ON CIFAR DATASETS

Method Accuracy(%) BT
EWC 71.6±0.4 -2.3±0.6
VCL 67.4±0.6 -9.2±0.8

FROMP 76.2±0.2 -2.6±0.4
S-FSVI 77.6±0.2 -2.5±0.2

MCFRCL:
DGW 73.08±0.2 -7.99±0.4
DGKL 72.49±0.2 -8.29±0.2
DLKL 73.16±1.1 -8.43±0.7
DCKL 67.8±0.5 -14.47±0.5

datasets. By contrast, on the more complicated CIFAR dataset,
while outperforming the weigh-regularisation methods, the
MCFRCL falls short compared to other function-regularisation
benchmarks. This suggests that the employed MC sampling
is ineffective at approximating complex model prediction
densities with a small number of samples. In the future, we will
consider applying our proposed method to some edge devices,
such as health monitoring systems [29], which require light
and fast models due to the limited computational power.
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Pellitero, M. De Lange, and T. Tuytelaars, “Clad: A realistic continual
learning benchmark for autonomous driving,” Neural Networks, vol. 161,
pp. 659–669, 2023.

[5] S. Auddy, J. Hollenstein, M. Saveriano, A. Rodrı́guez-Sánchez, and
J. Piater, “Continual learning from demonstration of robotics skills,”
Robotics and Autonomous Systems, vol. 165, p. 104427, 2023.

[6] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska
et al., “Overcoming catastrophic forgetting in neural networks,” Pro-
ceedings of the national academy of sciences, vol. 114, no. 13, pp.
3521–3526, 2017.

[7] J. Schwarz, W. Czarnecki, J. Luketina, A. Grabska-Barwinska, Y. W.
Teh, R. Pascanu, and R. Hadsell, “Progress & compress: A scalable
framework for continual learning,” in International conference on ma-
chine learning. PMLR, 2018, pp. 4528–4537.

[8] F. Zenke, B. Poole, and S. Ganguli, “Continual learning through synaptic
intelligence,” in International conference on machine learning. PMLR,
2017, pp. 3987–3995.

[9] A. Chaudhry, P. K. Dokania, T. Ajanthan, and P. H. Torr, “Riemannian
walk for incremental learning: Understanding forgetting and intransi-
gence,” in Proceedings of the European conference on computer vision
(ECCV), 2018, pp. 532–547.

[10] C. V. Nguyen, Y. Li, T. D. Bui, and R. E. Turner, “Variational continual
learning,” in International Conference on Learning Representations,
2018. [Online]. Available: https://openreview.net/forum?id=BkQqq0gRb

[11] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference:
A review for statisticians,” Journal of the American statistical Associa-
tion, vol. 112, no. 518, pp. 859–877, 2017.
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