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Conformal prediction (CP) provides a robust framework for
quantifying the uncertainty of predictions for machine and
deep learning. By leveraging the concept of prediction sets,
it guarantees marginal coverage of the prediction to the true
labels. In this paper, we develop a new method for quantifying
uncertainty based on CP and the theory of evidence. The
contribution includes a novel conformity score with a class
probability modeled by Dirichlet distribution. Predictions of
the neural network are interpreted as subjective opinions, and
the network aggregates the evidence underlying these opinions.
Moreover, using CP, the algorithm provides a set of predictions
that can be empty if the model’s confidence is lower than a
fixed threshold. This would prevent the model from making
uncertain predictions, thereby enhancing its overall reliability.
Results on tabular and image datasets attest the superior
performance of the proposed method compared to the state-
of-the-art (SoA) in terms of robustness and coverage metrics
as well as its effectiveness in detecting out-of-domain (OOD)
data.

Index Terms—uncertainty quantification, conformal predic-
tion, conformity score, evidence, prediction set.

I. INTRODUCTION

Recent advancements in Machine and Deep Learning (ML
and DL) have improved the overall performance of various
AI-driven systems. Therefore, applications covered large do-
mains ranging from medical [1], [2] to renewable energy
[3] to finance [4] and other fields. Moreover, to ensure
efficient decision making, it is important to quantify the
uncertainty associated to ML and DL predictions, especially
when dealing with critical applications such as medical ones
or autonomous vehicle control. Uncertainty Quantification
(UQ) provides insights into the reliability of models’ pre-
dictions. Several techniques have been developed to measure
this uncertainty, including Bayesian Neural Networks (BNNs)
[5], single-deterministic, and ensemble methods [6]. BNNs
infer prediction uncertainty by modeling uncertainties in the
Neural Network (NN) weights; the latter are represented using
probability distributions instead of deterministic values. In
[7], dropout is applied to estimate (NN) uncertainty based
on the result that optimizing the loss function of a NN with
dropout is equivalent to a Bayesian variational approximation
of a Gaussian process. In ensemble method, the algorithm is
trained multiple times, and the final prediction is obtained by
averaging the predictions of the individual members [6].On

the other hand, with single deterministic methods, the neural
network’s parameters are considered as deterministic. The
prediction, as well as the uncertainty, are computed using one
single forward pass on the network. In this category, several
approaches for classification are based on Dirichlet distribution
as a probability density function for class probabilities as in
[8]. Moreover, in [9], the authors propose a model based
on the theory of subjective logic [10]. The predictions of
the NN are interpreted as subjective opinions. To implement
this, they introduce a new loss function that aggregates the
evidence supporting these opinions. A detailed review of
the main approaches for UQ is given in [11]. The limit
with the above cited approaches is the lack of guaranteed
coverage, i.e the probability that the provided prediction covers
the ground truth. Moreover, additional hypothesis related to
the distribution is necessary. For example, in a BNN, the
NN’s weights are modelled as a Gaussian distribution. As an
alternative, Conformal Prediction (CP), a distribution-free UQ
framework, generates sets of possible labels for each input.
An interesting property of CP is the guarantee of marginal
coverage [12]. CP is largely applied to classification tasks
[12]–[14] and is model-agnostic. In this paper, we propose
a new method for classification with UQ based on CP. The
idea is to integrate evidence in the chosen conformity score.
The class probabilities are assumed to follow a Dirichlet
distribution whose parameters are related to the evidence and
the uncertainty. Two classifiers are then proposed based on
LeNet [15] and ConvNet [16], respectively. The classifiers are
integrated in a conformal prediction scheme to obtain the set of
predictions. This framework provides a more robust measure
of uncertainty by accounting the coverage probability.

The main contributions of this study are as follows:

• Propose an evidential conformity score.
• Use reliable metrics including robustness and coverage to

attest the proposed method performance.
• Generate an empty set when the algorithm is unsure of

its prediction.

A similar work based on Evidential Deep Learning and CP
was done in [17]. The authors evaluate their method using only
coverage evaluation metrics without considering the point-
prediction performance.

The rest of the paper is organised as follows. In II, the
proposed method is detailed. Section III is dedicated to the
evaluation metrics used to attest the performance of the UQ.

870ISBN: 978-9-46-459362-4 EUSIPCO 2025



Results are provided in section IV. Finally, a conclusion with
some perspectives are provided.

II. EVIDENTIAL CONFORMAL PREDICTION FOR
CLASSIFICATION WITH UNCERTAINTY QUANTIFICATION

We propose a new method for uncertainty quantification
based on conformal prediction called Evidential Conformal
Prediction for Classification (ECPC). Before presenting the
ECPC, we recall the idea of CP.

A. Preliminaries: Conformal Prediction

Consider n data samples {(Xi, Yi)}ni=1, where Xi is the
input and Yi is the output. Yi belongs to a set of discrete labels
Yi ∈ Y = {1, 2, ...,K}. We use a neural network parame-
terised by θ to predict the output Yi, given by Yi = fθ(Xi).
The algorithm of CP is resumed as follows:

1) Split the data into three sets: a training set, a calibration
set of size ncal unused for training, and a test set to
evaluate the performance of size ntest.

2) Train a classifier f̂ on the training set.
3) Evaluate the model on the calibration set to get the

predictions on the calibration set using fθ.
4) Fix a conformity score for data noted csi, with i being

the input index. The conformity score measures how
familiar the data is to the model. We choose our con-
formity score to be csi = 1 − f̂(Xi)Yi then compute
it for all data in the calibration set: Scal = {csi, i ∈
{1, ..., ncal}}

5) Compute the ⌈(n+1)(1−α)⌉
n quantile noted q̂ where α is

a user-fixed error rate.
6) Construct prediction sets for data in the test set. For

a new test data point (Xi, Yi), i ∈ {1, ..., ntest}, the
prediction set equals:

C(Xi) = {y : cs(Xi, y) ≤ q̂}. (1)

An important result of CP is to guarantee the marginal
coverage [18]. The theorem is given below.

Theorem 1. (Conformal Coverage Guarantee [18]) Suppose
(Xi, Yi)i=1,...,ncal

and (Xtest, Ytest) are exchangeable (i.e.
samples’ order doesn’t effect results). For a new data in the
test set (Xt, Yt), the following holds :

P (Yt ∈ C(Xt)) ≥ 1− α (2)

where α is a user-fixed error rate.

B. Evidential Conformal Prediction for Classification (ECPC)

The main idea of ECPC is to integrate evidence in the
conformal score to generate ”evidential” prediction sets. To
do so, we propose using Deep Evidential Classification (DEC)
algorithm [9] as the classifier to CP. As shown in Figure 1,
the input data are used to learn the parameters of the NN.
Unlike [9], different architectures are chosen to test the model
(more details are provided in the Results section). Moreover,
instead of using a softmax function in the NN, an evidence
function is applied to the logits zk so that the NN outputs

Fig. 1: Different steps of the ECPC method.

positive evidence ek for K classes instead of probabilities,
and predictions are represented as subjective opinions. The
evidence function is given by: ek = exp(min(max(zk,−c), c))
where c is a fixed positive constant. Note that other functions
can be used like ReLU...

The evidence is the degree of belief (or mass) assigned
to different possible outcomes. The higher it is, the more
certain the model is. This evidence is used in the calculation
of the parameters αk of a Dirichlet distribution: αk = ek +1.
By doing so, the prediction probability would be taking into
consideration the uncertainty uk as it is based on evidence:
uk = K

S and S =
∑K

k=1 αk = K +
∑K

k=1 ek. The lack of
evidence would allow ECPC to give empty prediction sets
when it is unsure. This is very important as it improves ECPC’s
reliability with respect to other methods where they always
give predictions even when unsure. The prediction probability
is given by the mean of the Dirichlet distribution:

p̂k =
αk

S
(3)

where k is the label index. This probability can be written in
terms of the evidence, we get:

p̂k =
ek + 1

K +
∑K

j=1 ek
. (4)

An important step in CP approaches is the choice of
conformity score ( Step 4 in Section II-A). It is critical as with
bad scores, prediction sets may be useless [12]; a prediction
set may be large enough to not offer real help in decision
making. We propose an evidential conformity score given by:

1− p̂(Xi)Yi
, (5)

where p̂(Xi) = (p̂1, ..., p̂K) is the vector of the predicted
probabilities for data sample i. p̂(Xi)Yi

corresponds to the
probability of the true class. This score is also called the
Hinge Loss [19]. Substituting equation (4) in (5), we write the
conformal score in terms of evidence making it an evidential
conformity score:

csi =
K − 1− ei +

∑K
j=1 ej

K +
∑K

j=1 ej
. (6)

This score provides a measure of conformity or ”strangeness”
of a data-point to the model. The higher the evidence is, the
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more conformal a data-point would be to the model. The
validity of coverage guarantees in conformal prediction is
distribution-free and holds irrespective of the specific con-
formity score used, thereby justifying the validity of our
evidential conformity score.

III. EVALUATION METRICS

To assess the performance of ECPC, we employ metrics for
single predictions and prediction sets for classification. Two
categories of metrics are considered: robustness and coverage.

A. Robustness metrics

We used two metrics to assess the robustness of the method:
Shannon Entropy and Brier Score.

Shannon Entropy measures the amount of randomness or
uncertainty in the outcomes. The closer the entropy is to zero,
the more certain the outcome is. It is defined as:

H(P ) = −
K∑

k=1

pk log(pk). (7)

where pk is the predicted probability for the kth label. The
entropy is calculated per data-point (to simplify the notation,
the index of the data-point is omitted). We propose to relate
the class probabilities given in Eq(3) with the entropy. The
latter can easily be written as

H(P ) = − 1

S
[
∑
k

αklog(αk)− SlogS]. (8)

The derivative is given by:

dH

dαk
= − 1

S
[logαk + 1] ≤ 0. (9)

Hence, entropy is a decreasing function of αk. Moreover, αk

is related to the evidence by αk = ek+1. Therefore when the
evidence increases, αk increases and entropy decreases leading
to a more confident prediction.

Brier score (BS) measures how accurate the predictions are
by calculating the error between the predicted probabilities and
the actual outcomes. It is given by

BS =
1

K

K∑
k=1

(pk − ok)
2 (10)

where pk is the predicted probability of label k and ok is the
true outcome. The lower the Brier score is, the more certain
the predictions are.

B. Coverage metrics

Unlike UQ methods with single output predictions, con-
formal predictors provide a set of predictions. The proposed
method is based on CP, therefore, coverage metrics [19] are
used to attest the performance.

Mean Prediction Set Width (MPSW). The width of a
prediction set for classification is given by the number of
classes in the set as follows

MPSW =
1

n

n∑
i=1

Wi (11)

where n is the total number of data-points and Wi is the width
of the prediction set of data-point i. The tighter the MPSW,
the higher the confidence in the prediction. OneC represents
the percentage of singletons in the prediction sets:

OneC =
1

n

n∑
i=1

singi, singi =

{
1, |C(Xi)| = 1

0, |C(Xi)| ̸= 1

where C(Xi) is the prediction set corresponding to data-point
i. |C(Xi)| denote the cardinal of the set C(Xi). High OneC
corresponds to a more certain model.

p-value measures how different a data-point is from the data
sample in the calibration set based on the conformity score.

pi =
|csj ≥ csi|+ 1

ncal + 1
(12)

where csi and csj represent respectively the conformity score
of the data-point i in test set and j in calibration one, csj ∈
Scal. A p-value close to 0 means that the data-point is highly
unusual compared to calibration data.

Prediction Set Coverage Probability (PSCP) represents
the percentage of times the true value is included in the
prediction set.

PSCP =
1

n

n∑
i=1

ci, ci =

{
1, yi ∈ C(Xi)

0, yi /∈ C(Xi)

For single output prediction methods, the PSCP is equivalent
to the accuracy of classification.

IV. RESULTS

Two datasets are used: MNIST and Titanic. Details about the
neural networks’ hyperparameters and the noise are provided
in table I. LeNet and ConvNet architectures are used [15], [16].
The dataset split is fixed across runs, resulting in negligible
variation between repeated experiments; therefore, results are
reported for a single representative run.

ECPC performance. Table II shows the different coverage
metrics used to evaluate the ECPC method. As expected,
MPSW increases on noisy and OOD data of Titanic dataset
using both NN architectures. The highest value is for the
OOD dataset, illustrating the ability of the method to detect
the distribution shift. However, it is not the case for MNIST.
MPSW decreases as the data becomes stranger to the model.
This is due to the fact that on MNIST data, ECPC generates
empty sets when images are ambiguous. This actually shows
the efficiency of the method by returning ”I don’t know”
as a response instead of wrong classification. For example,
using the LeNet architecture, the percentage of empty sets for
training is 0.17% and for testing is 0.23 %. This increases on
noisy and OOD data to 27.83 and 23.76 % respectively. This
means the stranger the data is to the model, the harder it gets
for it to make predictions. Indeed, the percentage of empty sets
on noisy data is higher than that of OOD as the added noise is
large enough to make images so blurry, they become stranger
to model than the OOD data. Conversely to MPSW, PSCP
decreases as the data gets unfamiliar to the model. The PSCP
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Dataset Format Total Size Train Calibration Test OOD Dataset Epochs
MNIST Images 70,000 48,000 12,000 10,000 FMNIST 100
Titanic Tabular 712 455 114 143 Forestfires 400
Noisy Data Gaussian noise applied on test data
MNIST Mean = 2 & Std = 4
Titanic Different means and stds on 3 out of 7 features
CP Coverage Parameter MNIST: α = 0.01 Titanic: α = 0.1

TABLE I: Dataset splits, noisy data settings, CP coverage parameters, and number of epochs for MNIST and Titanic datasets.
Metric MNIST Titanic

Train Test Noisy OOD Train Test Noisy OOD
LeNet ConvNet LeNet ConvNet LeNet ConvNet LeNet ConvNet LeNet ConvNet LeNet ConvNet LeNet ConvNet LeNet ConvNet

MPSW 0.998 0.79 0.999 0.79 0.73 0 0.83 0.31 1.43 1.6 1.5 1.65 1.48 1.66 1.73 2
OneC 99.82 78.93 99.57 78.95 71.64 0 69.39 25.16 56.92 39.34 49.65 34.96 52.45 33.57 26.69 0
p-value 0.81 0.53 0.82 0.53 0.0069 0.22 0.0063 0.17 0.53 0.55 0.5 0.48 0.5 0.46 0.33 0.25
PSCP 99.78 88.73 99.29 88.58 10.48 10.53 – – 95.82 98.46 94.4 93.71 93.71 91.6 – –

TABLE II: Performance metrics for ECPC for MNIST and Titanic datasets using LeNet and ConvNet architectures.

of the OOD data can’t be calculated because the ground truth
is unknown. As for the percentage of singletons, represented
by OneC, it is clear that ECPC is predicting wider sets as
data is getting different from the training set in the Titanic
dataset. This means, it is more certain of its prediction on
in-distribution data. Besides, for the OOD data, ECPC is less
certain so it is lost between more choices to predict. As for the
MNIST dataset, OneC indeed decreases. This is coherent with
the increase in the number of empty sets. The p-value given
in table II is the mean computed over all the data-points.

Fig. 2: Histogram of the p-values on MNIST test data.

Fig. 3: Histogram of the p-values on Titanic test data

p-value for Noisy and OOD. To illustrate the behaviour
on individual data-points, we propose the histograms of the p-
values in Figures 2 and 3 respectivelly for MNIST and Titanic
datasets. In Figure 2, we observe that both for noisy and OOD
data, the p-values are close to zero. This reveals a high degree
of non-conformity with the training data. This result illustrates
that the ECPC method successfully recognizes when the input
data varies significantly from what it has learned, leading to
higher uncertainty on the predictions. On the other hand, for
MNIST test data, the p-values approach 1, reflecting that the
model is well-acquainted with this data and permitting it to
provide more certain forecasts.

Figure 3 shows that for the test dataset, p-values range
between 0 and 1. Meanwhile, for noisy and OOD datasets,
p-values are between 0 and 0.05. This reflects the uncertainty
of the model on strange data.

Comparison with the SoA. In Table III, a comparative
analysis of the performance of ECPC on MNIST data using the
LeNet architecture with the following approaches is proposed:
1) Dropout applied to Convolutional Neural Network (CNN-
Dropout) proposed in [7], 2) Conformal Prediction with Lo-
gistic Regression as a classifier (LR-CP), 3) Bayesian Neural
Networks (BNN) proposed in [20]. Results are compared for
MNIST test data-with and without noise-and FMNIST as an
OOD data. The BS can’t be calculated on the latter dataset
since the ground truth is unknown. Likewise, coverage metrics,
in table II, cannot be calculated for CNN-Dropout and BNN as
they are single-prediction classifiers unlike ECPC and LR-CP
which generate prediction sets.

Metric Dataset CNN-Dropout BNN LR-CP ECPC

PSCP / Accuracy Test 86.4 95.9 99.1 99.24

Brier Score (BS) Test 0.72 0.07 0.12 0.0154
Noisy 0.9 0.09 1.54 0.9

Entropy
Test 2.25 0.11 0.28 0.067
Noisy 2.29 0.232 0.58 2.26
FMNIST 2.27 0.73 1.33 2.24

MPSW Test – – 2.5 1
Noisy – – 4.12 0.73

TABLE III: Comparison with SoA.

Table III shows that ECPC achieves a superior performance
in quantifying uncertainty overall as it has the lowest entropy
and Brier score for the test data. Notably, it correctly de-
tects OOD data, as illustrated by the comparison of entropy
between MNIST test data and FMNIST data: the difference
of entropies for ECPC is 2.14, but it is only 0.02 for the
CNN-Dropout. This means that CNN-dropout isn’t able to
detect well OOD data, meanwhile, ECPC exhibits enhanced
sensitivity to distributional shifts. Additionally, it is noted that
the differences between entropies of test and noisy data is
significantly higher for ECPC (2.193) than LR-CP (0.3) and
BNN (0.122). Furthermore, ECPC offers a distinct advantage:
MPSW in ECPC is nearly 1, significantly shorter than that in
LR-CP which is 2.5. This advantage indicates a more concise
and informative prediction.
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Fig. 4: Single predictions, prediction sets, and p-values of 2
random rotated images from the MNIST dataset

Data with Rotation Figure 4 shows the prediction sets
by ECPC and LR-CP on two rotated images with rotation
angles {0, 45, 90, 135, 180, 270} from MNIST alongside their
associated p-values. For the original image of digit 2, ECPC
predicts a singleton of the true label 2 with a maximum p-value
of 1, indicating high confidence. In contrast, LR-CP produces
a set of length 4, accompanied by a low p-value, indicating
less confidence. This behaviour is similarly observed with the
second un-rotated image of digit 8.

For a rotation of 90°(third column), ECPC predicts a set
containing the correct label (digit 2), but with a lower p-
value, indicating increased uncertainty. On the other hand,
LR-CP fails to cover the true label. For the image of digit 8,
despite its horizontal orientation, ECPC predicts a singleton
of the true label, while LR-CP produces a 5-elements set.
Comparing p-values, for both digits, shows that LR-CP is more
confident despite its wrong classification.With 135° rotation
(fourth column) of the first image of digit 2, ECPC is uncertain
but managed to generate a set of two labels, one of which
is correct. The method’s uncertainty is expected given the
high angle of rotation. However, LR-CP confidently predicts
a singleton of label 0. The same conclusion is drawn for the
image of digit 8.

Fig. 5: Image of label 3 with an empty prediction set.
Empty Set. A final illustration of the performance of

ECPC is presented in Figure 5. The image appears ambigu-
ous or unclear. This unclarity likely complicates accurately
identifying the correct labels. ECPC method has provided
an empty prediction set. Instead of providing a potentially
incorrect prediction, the algorithm indicates high uncertainty
by outputting a response of ’I don’t know’. On the other hand,
LR-CP generates a prediction set of size 6 and CNN-Dropout
predicts a wrong label of 7 .

V. CONCLUSION

In this paper, ECPC, a new method for quantifying un-
certainty in classification tasks, is proposed. The method is

based on conformal prediction to generate reliable uncertainty
estimates. ECPC is compared to the SoA. Its relevance is
highlighted in several experimental setups such as different
data formats, architectures, and unfamiliarity. The possibility
of predicting an empty set is attained, allowing the algorithm
to say ’I don’t know’ when it lacks enough evidence. Future
work will be focused on the coverage in conformal prediction
and on dealing with real-world applications.
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