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Abstract—Uncertainty Quantification (UQ) is essential in prob-
abilistic machine learning models, particularly for assessing the
reliability of predictions. In this paper, we present a systematic
framework for estimating both epistemic and aleatoric uncer-
tainty in probabilistic models. We focus on Gaussian Process
Latent Variable Models and employ scalable Random Fourier
Features-based Gaussian Processes to approximate predictive
distributions efficiently. We derive a theoretical formulation for
UQ, propose a Monte Carlo sampling-based estimation method,
and conduct experiments to evaluate the impact of uncertainty
estimation. Our results provide insights into the sources of
predictive uncertainty and illustrate the effectiveness of our
approach in quantifying the confidence in the predictions.

Index Terms—Uncertainty quantification, aleatoric, epistemic,
Gaussian process latent variable models, predictive distributions.

I. INTRODUCTION

Uncertainty Quantification (UQ) plays a fundamental role
in probabilistic machine learning (ML). ML models are in-
creasingly used in applications that require making decisions
and where reliable predictions are essential. This is especially
important in fields that demand reliable choices under un-
certainty, such as medical diagnosis [1] autonomous systems
[2], and scientific modeling in general [3]. However, most
traditional ML models provide only point predictions without
assessing their confidence. This, in turn, makes it difficult to
quantify the reliability of the results [5].

To address this limitation, probabilistic ML models provide
a foundational framework for representing uncertainty [4]. By
explicitly modeling uncertainty [10], these models not only
improve reliability in high-risk applications, but also promote
better generalization by distinguishing between known and
unknown regions in the input space. Moreover, uncertainty
estimates increase model interpretability by clarifying the
sources of uncertainty and revealing potential limitations and
biases, which emphasizes the role of UQ in characterizing
and managing the uncertainty inherent in models and their
predictions while providing valuable insights into reliability
and confidence calibration. Given the broad impact of UQ, im-
proving uncertainty estimation remains a pressing challenge.

In probabilistic ML models, uncertainty can be categorized
into two main types:

This work was supported by NSF under Award 2212506.

1) Epistemic uncertainty (E): Also known as model un-
certainty, this type of uncertainty arises due to a lack
of knowledge about the model, which, in turn, results
from insufficient training data. It reflects the model’s
confidence in its parameters and structure.

2) Aleatoric uncertainty (A): This uncertainty, often called
data uncertainty, originates from intrinsic noise in the
data-generating process and represents variability that
remains irreducible, even with unlimited data.

The total predictive uncertainty in a model is given by

T = E +A, (1)

where T represents the total uncertainty in the model’s pre-
diction.

In this paper, we focus on developing a principled frame-
work for estimating both epistemic and aleatoric uncertainty
in probabilistic ML models. Since probabilistic ML mod-
els comprise a broad range of approaches, we focus on
making the problem more tractable by studying the UQ of
predictions made by Gaussian process latent variable models
(GPLVMs) [9]. Specifically, we explore how uncertainty can
be efficiently quantified using scalable approximations, such
as Random Fourier Features (RFF)-based Gaussian processes
(GPs), which we use to construct GPLVMs.

Our contributions include:

• A systematic formulation of epistemic and aleatoric un-
certainty estimation.

• A scalable approach to UQ using RFF-based GPs.
• Methodology for computing epistemic and aleatoric un-

certainties, along with insights gained from experimental
results.

The paper is organized as follows. First, we provide back-
ground on probabilistic ML models in Section II, followed by
a brief overview of GPLVMs in Section III. In Section IV,
we present the theoretical foundation for evaluating epistemic
and aleatoric uncertainties, while in Section V we provide
details of the methods used for these evaluations. Section
VI discusses experimental results and insights gained from
various experiments. Finally, Section VII concludes with final
remarks.
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II. BACKGROUND

A probabilistic ML model learns a predictive distribution
over outputs yn given an input xn. The general formulation
takes the following form:

p(yn|xn,D) =

∫
p(yn|xn,θ)p(θ|D)dθ, (2)

where D = {xn,yn}Nn=1 is the training dataset, p(θ|D)
is the posterior distribution over the model parameters, and
p(yn|xn,θ) represents the likelihood function.

In many cases, ML models approximate this likelihood
function using a deterministic mapping from inputs to outputs.
In such models, a function f(xn,θ) produces a single output
estimate,

ŷn = f(xn, θ̂), (3)

where θ̂ is some estimate of θ obtained from the training data
D. However, probabilistic models extend this by modeling the
entire predictive distribution rather than just a point estimate
as given by (2).

We now describe how this predictive distribution quantifies
the uncertainty of the prediction through its total covariance.
Let the predictive distribution be given as in (2). Then, we can
express the predictive mean as follows:

Ep(yn|xn,D)[yn] = Ep(θ|D)

[
Ep(yn|xn,θ)[yn]

]
. (4)

To find the total predictive covariance, we apply the law of
total covariance and obtain

Covp(yn|xn,D)[yn] = Covp(θ|D)

[
Ep(yn|xn,θ)[yn]

]
+ Ep(θ|D)

[
Covp(yn|xn,θ)[yn]

]
. (5)

This decomposition separates epistemic uncertainty (first term)
from aleatoric uncertainty (second term), i.e.,

E = Covp(θ|D)

[
Ep(yn|xn,θ)[yn]

]
, (6)

A = Ep(θ|D)

[
Covp(yn|xn,θ)[yn]

]
. (7)

In words, the epistemic uncertainty measures how much the
expected prediction varies due to uncertainty in the parameters
θ. It is obtained by first computing the expectation over the
predictive distribution given the parameters and then comput-
ing the covariance of this expectation across different model
parameters sampled from the posterior of the parameters. The
aleatoric uncertainty is the expected predictive covariance due
to data noise under the model’s posterior.

III. GPLVMS AND INFERENCE WITH GPLVMS

We now briefly introduce GPLVMs with a focus on the un-
certainties in their predictions. GPLVMs are powerful tools for
modeling high-dimensional data by learning low-dimensional
latent representations [9]. They establish a connection between
a low-dimensional latent space and a high-dimensional ob-
served space through GPs. Specifically, GPLVMs model data
Y ∈ RN×dy in a high-dimensional space Y , where Y = Rdy ,
by assuming that these data are generated from latent variables
X in a lower-dimensional space, X , with X ∈ RN×dx and

X = Rdx , where dx ≪ dy . Here, N represents the number of
paired observations between X and Y .

More specifically, each observed vector yn ∈ Rdy , n =
1, 2, . . . , N is generated from a corresponding latent vector
xn ∈ Rdx , where the mapping xn 7→ yn is modeled using dy
GPs [7]. In other words, for a given latent variable xn, the
observed variable yn is drawn according to

yn ∼ N (f ,Σy), (8)

where Σy = diag{σ2
1 , σ

2
2 , . . . , σ

2
dy
}, and f is a vector of

dy functions, i.e., f(xn) = [f1(xn), f2(xn), . . . , fdy (xn)]
⊤,

each generated from a GP prior,

fd(·) ∼ GP(0, κd), d = 1, 2, . . . , dy. (9)

Figure 1 presents a visual representation of a GPLVM.

xn

y1,n

y2,n

...

ydy,n

f1(xn)

f2(xn)

fdy
(xn)

Fig. 1: A GPLVM with its basic elements, the latent vector
xn and dy GPs, one for each observed output.

Now we provide a brief overview of inference with
GPLVMs. Given the observed (training) data Y ∈ RN×dy ,
the main objective during training is to learn how to draw
samples from the posterior distribution,

p(X,θ,Σy|Y ) ∝ p(Y |X,θ,Σy)p(X)p(θ)p(Σy), (10)

where θ represents the model parameters, p(Y |X,θ,Σy)
is the likelihood function, where we treat Y as observed
variables and view X,θ, and Σy as the unknowns to be
inferred, and p(X), p(θ) and p(Σ) are the respective priors
of X , θ, and Σy . Samples from the posterior can be drawn
using methods such as Hamiltonian Monte Carlo (HMC) or
other Markov Chain Monte Carlo (MCMC) techniques.

For testing, let y∗ = [y⊤
o,∗,y

⊤
u,∗]

⊤, where yo,∗ and yu,∗
represent the observed and unobserved parts of y∗. The goal is
now to determine the predictive distribution of yu,∗ given yo,∗,
p(yu,∗|yo,∗, Y ), using the learned posterior of the GPLVM in
(10). We achieve this in three steps:.

1) First we infer the posterior distribution of the latent
variable x∗ that corresponds to the partially observed
test point yo,∗. This posterior is given by

p(x∗|yo,∗,Y ) ∝ p(x∗)

∫
p(yo,∗|x∗,θ,Σy)

× p(X,θ,Σy|Y )dXdθdΣy, (11)
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where p(yo,∗|x∗,θ,Σy) is a Gaussian distribution, and
p(X,θ,Σy|Y ) is given by (10).

2) Next we find the predictive distribution of the unob-
served components yd,∗, d ∈ Su, where Su represents
the set of indices corresponding to the unobserved
outputs. This is done using the GPs associated with
the respective components of yu,∗, which leads to the
predictive distribution

p(yd,∗|yo,∗,Y ) ∝
∫

p(yd,∗|x∗,θ,Σy)p(x∗|yo,∗,θ,Σy)

× p(X,θ,Σy|Y ) dXdθdx∗dΣy,
(12)

where p(x∗|yo,∗,θ,Σy) was determined in step 1, and
p(X,θ,Σy|Y ) is defined by (10).

3) From (12), we can draw samples of each yd,∗ and use
them to approximate its predictive distribution. Often,
this predictive distribution is approximated by a Gaus-
sian factorized across dimensions, i.e.,

p(yu,∗|yo,∗,Y ) =
∏
d∈Su

N (yd,∗|µd,∗, σ
2
d,∗), (13)

where µd,∗ is the posterior GP mean for dimension d,
and σ2

d,∗ is the corresponding posterior variance. The
variance σ2

d,∗ quantifies the uncertainty in each predicted
component of yu,∗ and it includes both aleatoric and
epistemic uncertainty, where the epistemic uncertainty
arises from the uncertainty of the latent variables and
the model parameters.

In order to expand our work on UQ to as wide a set of
problems as possible, we explore the use of Random Fourier
Features (RFF)–based GPs [6]. These GPs approximate an
adopted kernel function by a finite-dimensional RFF mapping
by

κ(x,x′) ≈ ϕ(x)⊤ϕ(x′), (14)

where ϕ(x) ∈ RJ×1 is given by

ϕ(x) =

√
2

J

[
cos(ω⊤

1 x), sin(ω
⊤
1 x), . . . , sin(ω

⊤
J/2x)

]⊤
,

(15)

where ωj are random frequencies, which according to
Bochner’s theorem [8], are drawn from the power spectral
density of the chosen kernel. The functions of interest shown
in Fig. 1 are then modeled by

fd(xn) = ϕ(xn)
⊤θd. (16)

Thus, after training the RFF-based GPs, the log-likelihood
used to optimize x∗ becomes

L =
∑
d∈So

logN (yo,∗,d|ϕ(x∗)
⊤θ̂d, σ̂

2
o,∗,d) + log p(x∗), (17)

where θ̂d and σ̂2
o,∗,d represent estimated values from the

training data.

IV. UNCERTAINTY QUANTIFICATION: THE THEORY

Given the above description of GPLVMs, we first formulate
the problem. We are given a training dataset D = {yn}Nn=1,
which is used to construct a GPLVM. The construction in-
volves estimating the latent variables X , the parameters of
the GP models, Θ = [θ1, . . . ,θd], and Σy . The estimates
of X , Θ, and Σy can be samples from p(X,θ,Σy|Y ),
which we denote by X(m), Θ(m), and Σ

(m)
y , m = 1, . . . ,M .

After training, a test observation y∗ is provided, where some
elements are missing. The missing variables are predicted
using Gaussian predictive distributions constructed by the GPs
that correspond to these variables. Our goal is to quantify
the epistemic and aleatoric uncertainties associated with these
predictions.

As already pointed out, we use the law of total variance and
decompose the total predictive variance of yd,∗ by

Var[yd,∗] = Ep(x∗|yo,∗,Y )

[
Varp(yd,∗|x∗,θd)[yd,∗]

]︸ ︷︷ ︸
Aleatoric Uncertainty

+ Varp(x∗|yo,∗,Y )

[
Ep(yd,∗|x∗,θd)[yd,∗]

]︸ ︷︷ ︸
Epistemic Uncertainty

. (18)

We focus first on the epistemic uncertainty when making
predictions of yd,∗. This uncertainty comes from three main
sources

1) Uncertainty in training latent variables X: Recall that
X was inferred from data and that it follows a posterior
distribution p(X|Y ), which affects both θd and x∗.

2) Uncertainty in test latent variable x∗: The posterior
p(x∗|yo,∗,Y ) also introduces variability in predictions.

3) Uncertainty in function parameters θd: Since θd is
also inferred from data, its posterior p(θd|X,Y ) also
contributes to epistemic uncertainty.

The predicted value of yd,∗ has a mean that is linear in θd,
i.e.,

Ep(yd,∗|x∗,θd)[yd,∗] = ϕ(x∗)
⊤E[θd|X,Y ]. (19)

Thus, the epistemic uncertainty simplifies to

σ2
epistemic,d,∗ = Varp(x∗|yo,∗,Y )

[
ϕ(x∗)

⊤E[θd|X,Y ]
]
. (20)

Now we use the law of total variance, and we decompose
the epistemic uncertainty into contributions from the training
latent variables X and test latent variable x∗,

We incorporate the uncertainty in X by applying the law
of total variance again. We write

σ2
epistemic,d,∗

= Ep(X|Y )

[
Varp(x∗|yo,∗,X,Y )

[
ϕ(x∗)

⊤E[θd|X,Y ]
]]

+ Varp(X|Y )

[
Ep(x∗|yo,∗,X,Y )

[
ϕ(x∗)

⊤E[θd|X,Y ]
]]
,

(21)

where the first term accounts for uncertainty due to test input
variability, reflecting how variations in x∗ variations influence
the prediction, and the second term accounts for uncertainty
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from inferred latent variables and represents the impact of
different inferred values of X .

We recall that

Ep(yd,∗|x∗,θd)[yd,∗] = ϕ(x∗)
⊤θd, (22)

and write

Varp(x∗|yo,∗,X,Y )

[
ϕ(x∗)

⊤E[θd|X,Y ]
]

= Ep(x∗|yo,∗,X,Y )

[
ϕ(x∗)

⊤Cov[θd|X,Y ]ϕ(x∗)
]

+ Varp(x∗|yo,∗,X,Y )

[
ϕ(x∗)

⊤E[θd|X,Y ]
]
. (23)

Next, we take the expectation over p(X|Y ) and obtain

σ2
epistemic,d,∗ = Ep(X|Y )

[
µ⊤

ϕ Cov[θd|X,Y ]µϕ

+ Tr
(
Covp(x∗|yo,∗,X,Y )[ϕ(x∗)]Cov[θd|X,Y ]

)]
+ Tr

(
Covp(x∗|yo,∗,Y )[Ep(yd,∗|x∗,θd)[yd,∗]]

)
, (24)

where

µϕ = Ep(x∗|yo,∗,X,Y )

[
ϕ(x∗)

]
. (25)

We observe that

(a) the uncertainty of the function parameters is
quantified by p(θd|X,Y ), more specifically by
Cov[θd|X,Y ]. We note it affects the predictions
through both expectation and variance terms,

(b) the uncertainty due to x∗ is quantified
by p(x∗|yo,∗,X,Y ) and is tracked via
Varp(x∗|yo,∗,X,Y )[·], and

(c) the effect of the uncertainty on the predictions
due to X and quantified by p(X|Y ) appears in
Varp(X|Y )[·].

Now we turn our attention to the aleatoric uncertainty. In
our GPLVM framework, we assume that

yd,∗ ∼ N (ϕ(x∗)
⊤θd, σ

2
d), (26)

and, thus,

Varp(yd,∗|x∗,θd)[yd,∗] = σ2
d. (27)

We note that since x∗ is random, σ2
d is also random. We take

the expectation over p(x∗|yo,∗,Y ) and write

σ2
aleatoric,d∗ = Ep(x∗|yo,∗,Y )[σ

2
d]. (28)

From training, the noise variance σ2
d is inferred from the

posterior

p(σ2
d|Y ) =

∫
p(σ2

d|X,Y )p(X|Y )dX. (29)

Thus, the full expression for aleatoric uncertainty is

σ2
aleatoric,d,∗ = Ep(X|Y )Ep(x∗|yo,∗,X,Y )[σ

2
d]. (30)

V. UNCERTAINTY QUANTIFICATION: THE METHODS

In this section we discuss the actual computation of the
epistemic and aleatoric uncertainties. We propose an approxi-
mation based on a Monte Carlo sampling method. We compute
the epistemic uncertainty defined by (24) using the following
approach:

• Draw M samples X(m) ∼ p(X|Y ).
• For each X(m), draw L samples

x
(m,ℓ)
∗ ∼ p(x∗|yo,∗,X

(m),Y ).

The Monte Carlo estimate is then

σ2
epistemic,d,∗ ≈ 1

M

M∑
m=1

[
µ⊤

ϕ Cov[θd|X(m),Y ]µϕ

+ Tr
(
Covp(x∗|yo,∗,X(m),Y )[ϕ(x∗)]Cov[θd|X(m),Y ]

)]

+
1

M

M∑
m=1

Tr
(
1

L

L∑
ℓ=1

(
ϕ(x

(m,ℓ)
∗ )⊤E[θd|X(m),Y ]

)2)
.

(31)

The aleatoric uncertainty from (30) is approximated by

σ2
aleatoric,d,∗ ≈ 1

M

M∑
m=1

[
1

L

L∑
ℓ=1

σ
2(m)
d

]
. (32)

VI. UNCERTAINTY QUANTIFICATION: THE INSIGHTS FROM
EXPERIMENTS

In this section, we describe our experiments and present
insights gained from them. We generated N = 1,000 four-
dimensional observations yn, with 800 used for training and
the remaining 200 reserved for testing. Each observed vector
yn was obtained by first drawing a latent variable xn ∈ R2 ac-
cording to xn ∼ N (0, σ2I), and then applying four different
functions to obtain yd,n for d = 1, 2, 3, 4. More specifically,
the observations were generated as follows:

1) linear function (baseline):

y1,n = w⊤
1 xn + ϵ1,n, ϵ1,n ∼ N (0, σ2

ϵ ), (33)

2) nonlinear squared function:

y2,n = (w⊤
2 xn)

2 + ϵ2,n, ϵ2,n ∼ N (0, σ2
ϵ ), (34)

3) periodic function:

y3,n = sin(w⊤
3 xn) + ϵ3,n, ϵ3,n ∼ N (0, σ2

ϵ ), (35)

4) discontinuous step function:

y4,n =

{
1 + ϵ4,n, if w⊤

4 xn > 0,

−1 + ϵ4,n, otherwise,
, ϵ4,n ∼ N (0, σ2

ϵ ),

(36)
where the variance of the noise in all the outputs was σ2

ϵ = 1,
and the weights wd ∈ R2 were drawn independently from
N (0, σ2

wI2), with σ2
w = 1.

During training, we drew M = 100 samples from p(X|Y )
using the variational distribution of X . For each test sample,
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Fig. 2: The estimated aleatoric uncertainties in each of the four
predicted outputs of y∗ for various values of J . It was assumed
that one of the outputs was missing while the remaining ones
were observed.

yo,∗ and X(m), we generated L = 100 samples of x∗ accord-
ing to x

(m,ℓ)
∗ ∼ p(x∗|yo,∗,X

(m),Y ). We used the generated
training samples X(m) to compute the epistemic and aleatoric
uncertainties defined by (31) and (32), respectively. We con-
ducted experiments where the number of drawn frequencies
took values from the set J ∈ {10, 25, 50, 100, 200, 500}. All
the frequencies were obtained by sampling from the radial-
basis-function kernel.

During evaluation, we computed the aleatoric and epistemic
uncertainties as described in the previous section. In each
trial, we assumed that one of the output variables, yd,∗, was
missing and had to be predicted using the remaining variables.
For example, to predict y1,∗, we used the observed values
y2,∗, y3,∗, and y4,∗ to estimate the latent variable x∗, which
was then used to infer y1,∗. The boxplots in Figs. 2 and 3
summarize average aleatoric and epistemic variances com-
puted on 200 test samples per trial, following training. Each
boxplot is constructed from 50 such averages obtained across
independent simulations. The circles denote outlier trials. The
plots illustrate the consistency of uncertainty estimates and the
variability across test instances.

We observe that the aleatoric uncertainty of y1,∗, which
corresponds to the linear function, was estimated accurately
and did not vary across values of J . In contrast, the aleatoric
uncertainty for y4,∗, which corresponds to the step function,
was significantly overestimated due to the limited ability
of GPs to model discontinuities. The epistemic uncertainty
reached its highest value for y4,∗, which reveals the model’s
lack of confidence in regions with abrupt changes, and its
lowest value for y3,∗, the periodic function output, which is
smooth and more suitable for GP models.

VII. CONCLUSIONS

In this paper, we presented a systematic framework for
UQ in probabilistic ML models with focus on GPLVMs. We
provided a theoretical formulation for decomposing predic-

Fig. 3: The estimated epistemic uncertainties in each of the
four predicted outputs of y∗ for various values of J . It
was assumed that one of the outputs was missing while the
remaining ones were observed.

tive uncertainty into epistemic and aleatoric components and
introduced a Monte Carlo sampling-based approach for their
estimation. Using RFF-based GPs, we demonstrated a scalable
and efficient method to approximate predictive distributions.
Our experimental results provided insight into the impact of
uncertainty estimation on model reliability. The computation
of uncertainties relied on Monte Carlo simulations, which in
turn introduced additional sources of uncertainty. This was not
accounted for in this paper and is left for future work.
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