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1 Center for Machine Vision and Signal Analysis, University of Oulu, Finland
2 Faculdade de Engenharia da Universidade do Porto, 3INESC TEC, Portugal

Email: sasan.sharifipour@oulu.fi

Abstract—This paper introduces a novel service-oriented
framework, Radio Propagation as a Service (RPaaS), that bridges
the gap between raw sensor data and high-fidelity wireless
channel simulations. RPaaS transforms noisy, sensor-derived
point clouds into accurate 3D models through robust registration,
segmentation, and edge detection. These models then feed into
a GPU-accelerated ray tracing engine that computes multi-
path propagation effects, while a separate module derives key
electromagnetic and channel parameters. All components are
orchestrated via a REST API in a Dockerized environment, en-
abling dynamic reconfiguration based on sensor data conditions.
Experimental validation against commercial ray tracing tools and
channel measurements demonstrates that our approach provides
accurate simulations even in the presence of sensor noise.

Index Terms—Radio Propagation, Ray Tracing, 3D Recon-
struction, Service-Oriented Architecture.

I. INTRODUCTION

Accurate characterization of radio channels is essential
for the design and optimization of next-generation wireless
systems, including emerging 5G, 6G, and beyond. Tradi-
tional propagation models often rely on simplistic assump-
tions or purely stochastic methods that, while computationally
tractable, may fail to capture the complex interactions of
signals in realistic indoor and outdoor environments. Likewise,
geometric ray tracing has historically been performed on static
or hand-modeled triangle meshes, which can be labor-intensive
to create and insufficiently detailed to account for diffraction
edges, small-scale scatterers, or partial occlusions. As wireless
systems move toward higher frequencies (millimeter-wave
bands) and tighter link budgets, small changes in geometry can
produce significant effects on path loss, multipath components,
and overall channel performance. There is a need for a more
flexible and accurate approach to propagation modeling.

Meanwhile, the availability of affordable RGB-D sensors
has opened the door to constructing detailed digital twins
of real-world environments. These sensors provide dense
point clouds of buildings, rooms, and even dynamic scenes,
promising a level of geometric fidelity previously unattainable.
However, sensor-derived point clouds are inherently noisy
and incomplete, with artifacts arising from reflective surfaces,
limited fields of view, or multi-path in the optical domain.
Moreover, stitching together multiple scans from different sen-
sor positions requires robust registration algorithms. Without
careful preprocessing, labeling of surfaces, and the identifica-

tion of diffraction edges—downstream ray-tracing calculations
can suffer from inaccuracies that overshadow the potential
benefits of using real-world data.

To address these challenges, we propose a unified, service-
oriented framework called Radio Propagation as a Service
(RPaaS), which transforms raw sensor data into high-fidelity
3D models and subsequently computes multi-path radio prop-
agation parameters. Our approach couples a dedicated 3D
reconstruction pipeline with a specialized ray tracer, capable
of handling dense, noisy point clouds directly. By integrating
these components within a single Flask-based REST API, the
entire workflow—from sensor data acquisition to final channel
estimation—becomes accessible on demand, facilitating rapid
experimentation and scalability.

Specifically, we extend a GPU-accelerated ray-launching
algorithm designed to compute exact propagation paths even
in the presence of noise, embedding it into a larger data
processing pipeline that performs robust registration, semantic
segmentation, normal computation, and triangle mesh creation,
all of which help ensure that the geometry is suitable for pre-
cise reflection and diffraction modeling. The results are used
in an electromagnetic (EM) computation module to derive path
coefficients, channel impulse responses (CIR), and channel
state information (CSI). By consolidating these capabilities
into a single REST-based service, researchers can obtain
accurate channel simulations from raw sensor data streams,
even when faced with dynamic or cluttered environments. Our
main contributions are summarized as follows:

• A Service-Oriented Control architecture, based on a
centralized REST API that coordinates Dockerized, mod-
ular components, allowing dynamic execution balance.

• A 3D Reconstruction Pipeline that produces robust 3D
models even under challenging noise conditions, com-
prising point cloud registration, semantic segmentation,
normal estimation, edge identification and mesh creation.

• An Extension of NimbusRT, a novel ray launching algo-
rithm that generates coarse paths from noisy dense point
clouds is extended to support processed data obtained
directly from the 3D Pipeline.

• An Electromagnetic Computation Module that com-
putes key channel parameters such path coefficients and
CSI based on the ray-traced paths on top of the sensor-
based 3D models.
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II. RELATED WORK

Recent efforts in radio communications, such as the CON-
VERGE project [1], have focused on developing service-
oriented frameworks that integrate real-time sensor data with
high-fidelity channel simulations. Differentiable ray tracing
methods [2], [3] offer gradient-based optimizations, yet they
typically rely on preprocessed geometries rather than dynamic
sensor inputs. Hybrid approaches—combining techniques such
as vector parabolic equations with ray tracing [4], point-
scatterer methods for time-varying channels [5], and auto-
mated geometry extraction [6]—address specific challenges.
However, the efforts have centered around individual compo-
nents, but still fall short of delivering a unified framework [7].

Ray tracing remains a cornerstone for simulating wireless
channels by predicting path loss, multipath effects, and in-
terference [8], [9]. Traditional methods depend on accurate
CAD models, which can be inadequate in dynamic or cluttered
environments due to incomplete 3D representations. Recent
advances in sensor-based digital twins [10] have given rise to
systems such as Sionna RT [3] and NimbusRT [11] that seek to
bridge this gap, although their effectiveness is still constrained
by the quality of noisy input data, which still needs accurate
and pre-processed 3D models.

Advances in 3D reconstruction using RGB-D or LiDAR
sensors are able to produce various accurate representa-
tions—including point clouds, polygonal meshes, and volu-
metric grids [12], [13]—each offering distinct trade-offs in
fidelity and computational demand. Robust segmentation still
remains challenging in noisy environments, although recent
work employing deep learning techniques, such as SAM3D
[14] and OneFormer3D [15], shows promise in overcoming
these obstacles. Despite significant progress in individual
processing steps, a comprehensive pipeline that consistently
delivers ray tracing-ready 3D models from raw sensor data
has yet to be achieved.

At the moment, while modular simulation pipelines exist,
the integration of real-time sensor processing, advanced 3D
reconstruction, and high-fidelity propagation simulation con-
tinues to be an open issue.

III. SYSTEM ARCHITECTURE

The proposed system adopts a microservice-oriented de-
sign in which a single top-level REST API service, called
the RPaaS-API, orchestrates multiple Dockerized functional
components. Each component is also accessible through its
own (internal) REST-based interface, thereby isolating depen-
dencies and allowing independent updates or replacements.
From the user’s perspective, however, all operations—ranging
from sensor data acquisition to 3D model generation and
final channel computations—are invoked through the unified
RPaaS-API. Figure 1 provides an overview of the proposed
system. Key micro-services (3D Reconstruction, Ray Tracing
and EM Computation) are orchestrated through a single REST
endpoint, hiding internal details from the user:

RPaaS API & Service-Oriented Control Layer: A cen-
tralized RESTful API, and a local repository serve as the

Fig. 1. System Architecture. A Docker container with an external REST API
and a local repository orchestrates the control of the dockerizer implementa-
tion modules (Registration, Annotation, Raytracing, EM-Computing) through
their internal APIs.

top-level entry point for all simulation requests. Internally,
it launches dockerized modules for Point Cloud reconstruc-
tion, annotation, ray tracing, and EM computations, coor-
dinating data exchange among them. This design allows
users to dynamically configure simulation parameters (such as
speed/accuracy trade-offs) and seamlessly integrate additional
components in the future. By exposing a uniform set of
endpoints (e.g., for uploading sensor data or retrieving channel
estimates), the control layer ensures consistency and scalability
across the entire pipeline.

Sensor Data Acquisition and Registration: This module
handles the ingestion and preliminary registration of raw
sensor inputs—such as RGB-D images, LiDAR scans, or
multi-view photographs. Depending on the use case, it may
also include calibration data or metadata describing sensor
positions and orientations. The system stores these inputs in a
structured format that a 3D reconstruction module can easily
consume. In dynamic scenarios, it can be repeatedly invoked
to capture incremental changes in the environment.

Annotation: This modules segments the data and assigns
semantic labels to different parts of the 3D model. This step
ensure that surfaces, diffraction edges, and material properties
are properly annotated for downstream processing in the ray
tracing and electromagnetic computation modules.

Raytracing Engine: This module operates on the processed
3D data, tracing paths between transmitters and receivers. It
uses an environment-driven ray launching (RL) approach to
detect reflections, diffractions, scattering, and reconfigurable
intelligent surface paths. By iterating with gradient-descent
refinement, it corrects coarse path approximations acquired
through RL. The engine exploits GPU acceleration to handle
large point clouds efficiently and can adapt to user-specified
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parameter (e.g. max number of reflections or diffractions).
EM & Channel Computation Module: Based on the ge-

ometric paths from the raytracing engine, this module derives
electromagnetic parameters such as path gains, phases, and
CIR. It interprets segmentation labels from the 3D model
to apply frequency-dependent material properties, enabling
realistic modeling of multi-band channels. Users can config-
ure subcarrier spacing or other system parameters to obtain
wideband or narrowband channel estimates.

External Interfacing: Finally, external tools—such as
higher-layer network simulators, visualization front-ends, or
machine learning frameworks—can interact with the pipeline
programatically, obtaining results through standardized output
formats(e.g., JSON or YAML) returned by the RPaaS API.
This interface is especially useful for large-scale studies or
iterative workflows, where the radio channel data feeds back
into other processes (e.g., coverage optimization or robotic
navigation). By supporting a clear external interface, the
system can be readily integrated into other simulation envi-
ronments or digital twin applications.

The modular, microservice-based structure of the RPaaS-
API ensures that each component can be developed, updated,
or scaled independently. For instance, new segmentation algo-
rithms can be integrated into the 3D Pipeline container without
disrupting the NimbusRT or Sionna modules. Likewise, if an
organization prefers an alternative ray tracer, they can replace
NimbusRT with minimal changes to the REST interface, as
long as the output format remains consistent. This design
also facilitates horizontal scaling: in a production environment,
one could replicate containers of the most heavily used mod-
ule—such as the ray tracer—behind a load balancer, allowing
multiple user requests to be handled concurrently. The RPaaS-
API design brings a cohesive, service-oriented methodology to
radio propagation modeling, bridging the gap between noisy
sensor data and high-fidelity channel simulations.

A. 3D Pipeline Modules

The pipeline takes RGB-D images or LiDAR scans as input,
fusing them into a global 3D representation using point cloud
registration. When the input consists of RGB images only,
DUSt3R is used for 3D reconstruction. Surface reconstruction
is performed using TSDF fusion to generate a triangle mesh.
We address partial overlaps, sensor noise, and drift in multi-
view captures. This step builds a denser model and filters out
spurious measurements.

After obtaining this consolidated model, we perform Seg-
mentation to semantically or geometrically assign labels to
distinct regions. We employ 3D instance and panoptic seg-
mentation approaches, relying on classical plane extraction
in Open3D to isolate large surfaces (e.g. floors, walls and
ceilings) in less cluttered scenes, and turn to advanced neural-
network method such as SAM3D [14], when dealing with
more complex or crowded environments. With a multi-strategy
approach, each point is accurately categorized, allowing us to
refine or smooth specific segments, attach material properties,
and ultimately enhance the interpretability of the 3D data.

With segments defined, we carry out Normal Estimation
on each cluster or surface patch to derive accurate per-point
orientations. This step mitigates small-scale noise by locally
fitting planes or using neighborhood-based principal compo-
nent analysis (PCA). Proper normal vectors are crucial for
predicting physically correct reflection and diffraction angles,
thus directly improving the realism of radio propagation paths
in high-frequency scenarios.

We employ the normals to conduct Edge Identification to
detect sudden changes in surface orientation, targeting corners
and boundaries where diffraction plays a key role. Identifying
these edges as explicit geometry features ensures they are
correctly represented for the raytracing module algorithm,
significantly reducing errors in modeling non-line-of-sight
(NLoS) components.

The pipeline can accommodate Dynamic or Differential Up-
dates, which allows us to incorporate new sensor data without
rebuilding the entire model from scratch. By comparing two
point clouds, we can isolate and process only the changed
geometry, re-fusing and re-segmenting these updated regions
to keep the digital twin in sync with real-world alterations.
This capability lets us highlight newly detected or modified
objects in the room’s virtual representation. Such near-real-
time synchronization accounts for the physical environment
evolving or becoming more cluttered.

B. Ray Tracing and EM Computation Integration
The NimbusRT ray tracer first computes the geometric paths

between TXs and RXs in an annotated 3D point cloud scene
produced by our 3D reconstruction pipeline. The segmentation
labels available in the annotated point cloud are utilized to
remove the duplicate paths. As the underlying geometry has
no explicit surface representation and is noisy, a way of
distinguishing and removing near identical path trajectories
is needed, for example, in the case of specular reflections.

For EM computations, our ray tracer produces the paths
in a Sionna compatible format. Each interaction contains an
material label acquired from the intersections, which can then
be assigned with the electromagnetic properties of choice. The
output is a set of path coefficients for each TX-RX pair. This
enables that the EM computations can efficiently be calculated
for multiple frequencies by only tracing the paths once.

IV. SERVICE IMPLEMENTATION DETAILS

The framework was developed under a Design Science
Research (DSR) cycle consisting of (1) problem identifi-
cation through CONVERGE use-cases, (2) iterative artefact
construction, and (3) evaluation against baseline methods.
Each iteration followed the build–measure–learn loop: after
integrating a module, we measured path-loss error and CIR
similarity, refined the module, and repeated. The final artefact
(RPaaS) is evaluated against SionnaRT synthetic-mesh results
and Wireless InSite simulations.

A. Data Structures and Formats
The system accepts raw sensor inputs as RGB-D images

(color and depth stored in PNG format) and preprocessed
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3D data as PLY point clouds or triangle meshes. During
processing, point clouds are augmented with segmentation
labels (object IDs) and normal vectors, and diffraction edges
are flagged. Material properties are defined in a YAML file
dictionary that maps segmentation labels to electromagnetic
ITU materials as defined in Sionna, ensuring that both the
geometric and material characteristics are embedded in the
internal representation. Final outputs—including computed
propagation paths, CIR, and other channel data—are serialized
in YAML or JSON formats. Key processing libraries include
Open3D [16] (for point cloud manipulation, visualization,
and mesh creation) and the Point Cloud Library (PCL) for
segmentation and normal estimation.

B. API Endpoints and Workflow

In the application flow, a user uploads raw sensor data
(e.g., RGB-D images) to the RPaaS-API, which then delegates
preprocessing tasks to a dedicated 3D pipeline container
running libraries such as Open3D. This pipeline merges and
cleans point clouds, estimates normals, segments geometry,
and optionally constructs triangle meshes. Once the annotated
3D environment is available, the RPaaS-API can trigger the
raytracing module (NimbusRT) in another container to com-
pute multi-path trajectories directly on the processed data.
Finally, the EM and channel modeling module, built on
Sionna, translates these geometric paths into CIR, CSI, or
other relevant wireless metrics. Each module has its own REST
endpoints internally, but the user only interacts with a coherent
set of high-level operations exposed by the RPaaS-API.

By structuring the platform in this manner, we decouple spe-
cialized functionality (e.g., 3D reconstruction & ray tracing)
while maintaining a consistent interface. This approach sim-
plifies integration and testing while also facilitates scaling: for
instance, one could replicate the raytracing containers if many
simultaneous propagation requests arrive. The service-oriented
architecture enables seamless integration with external tools,
making it suitable for large-scale network simulations.

From a user’s perspective, the RPaaS-API provides con-
figuration endpoints such as POST /Configure_3DMap,
/Configure_RT, and /Configure_EM to set recon-
struction and simulation parameters. Execution is trig-
gered via POST /Build_3D, /Trace_PathRays, and
/Compute_Channel, each returning a jobID. Results
can be retrieved using GET requests (e.g., /Get3DMap,
/GetPathRays). This modular workflow supports step-wise
control and monitoring of the entire propagation pipeline.

Figure 2 illustrates the typical data flow within the RPaaS-
API. Upon receiving a request to reconstruct a 3D environ-
ment, the service forwards the input files (e.g., sensor data)
to the 3D Pipeline container. Once the pipeline completes its
tasks (registration, segmentation, etc.), it stores the resulting
annotated point cloud or mesh in a shared volume or database.
A subsequent call to trace radio paths triggers NimbusRT in
another container, which reads the geometry, performs ray
launching, and produces a set of multi-path components. Fi-
nally, a call to the EM computation endpoint launches Sionna,

Fig. 2. High-level sequence of configuration, execution and data retrieval
calls in RPaaS-API.

which processes those multi-path components to compute CIR
or frequency responses. All intermediate and final results are
accessible via standard HTTP GET requests.

V. RESULTS AND DISCUSSION

To demonstrate the effectiveness of our pipeline, we evalu-
ate a corridor scene captured using RGB-D sensors. The initial
point cloud contains noise, missing data, and misalignment,
which our reconstruction pipeline refines through fusion, seg-
mentation, normal estimation, and diffraction edge detection.
Figure 3, shows a step-by-step visualization of this process.

Using the same corridor scene, we validated our results
against available real-D band channel measurements [17].
Additionally we compare the paths generated by our tool
against those created using a commercial radio propagation
simulation tool (Wireless Insite), but from manually created
synthetic mesh of the same environment. Detailed comparisons
are shown in previous work [11]. In this work, we extend the
analysis by evaluating power delay profiles (PDPs) obtained
from our ray tracer operating on the noisy reconstructed point
cloud. We compare these results with PDPs generated using
SionnaRT, which relies on a manually synthetic created mesh,
as well as with the real measurements. Figure 4 shows that our
system produces PDPs that closely match both the SionnaRT-
based simulation and the measured data, further validating the
feasibility of using reconstructed point clouds for ray tracing-
based radio propagation modeling.

For a mid-size scene such as the example corridor, the
integrated 3D reconstruction, segmentation, and processing
pipeline typically completes in about one minute on a mid-
budget nVidia RTX4070 GPU. Once the base model is built,
new RGB-D images can be incorporated to the model at
roughly 7 frames per second, enabling near-real-time updates.
Meanwhile, the ray tracing and electromagnetic (EM) compu-
tation stages—responsible for simulating complex propagation
paths—run at approximately 20 frames per second, even
for reasonably complex scenes. Key performance consider-
ations include the heavy reliance on GPU acceleration for
both reconstruction and ray tracing. The system’s modular
design, implemented through Dockerized containers, allows
each processing stage (3D reconstruction, ray tracing, and EM
computation) to be scaled independently. This containerization
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Fig. 3. Example results from the pipeline applied to a simple corridor.
A Consolidated Point Cloud, where raw sensor data is fused into a global
representation while mitigating noise and occlusions is followed by Segmen-
tation to distinguish large structures from clutter. Surface Normals define
point orientations used to identify Diffraction Edges. The Input Images
provide scene context, while the Edges, Diffraction Cone, and Computed Paths
illustrate diffraction-aware radio signal propagation from transmitter (Tx) to
receiver (Rx).

facilitates parallel processing and dynamic load balancing, en-
suring that the service can handle multiple concurrent calls or
sessions efficiently. Our experiments show that even with mid-
range hardware, the pipeline achieves robust performance, and
docker orchestration further simplifies scaling across multiple
nodes when higher throughput is required.
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Fig. 4. Comparison of the measured and simulated power delay profiles.

VI. CONCLUSION

This paper proposed a unified RPaaS-API that orchestrates
components based on Open3D-based pipeline, NimbusRT, and
Sionna to deliver accurate channel estimation from noisy
point clouds. Its novelty lies in integrating sensor-driven
3D modeling with service-based ray tracing, addressing key
challenges for 5G/6G, digital twins, and high-frequency appli-
cations. Planned enhancements include more robust dynamic
updates, improved performance, and broader validation, while
future expansions may extend support to larger environments,
advanced wave phenomena, and additional sensing modalities
such as LiDAR, radar or radio-based sensing. The open,
microservice-based design a novel convergent collaboration
between radio propagation and computer vision research,
facilitating upcoming real-world trials and the evolution of
RPaaS alongside emerging 6G technologies.
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