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Abstract—This paper presents an experimental study on 

computational imaging (CI) using dynamically reconfigurable 

metasurface antennas (DMAs). By leveraging DMAs, the system 

generates spatially incoherent radiation patterns (measurement 

modes), enabling efficient three-dimensional image 

reconstruction with reduced hardware complexity. The 

performance of the proposed system is evaluated through 

experimental tests, analyzing key factors such as the number of 

tuning states (i.e., the number of masks), the number of 

frequency samples, and the image reconstruction methods. The 

results demonstrate that increasing the number of masks and 

frequency samples enhances the image quality while reducing 

them leads to degraded reconstruction performance. 

Furthermore, we conduct a comparative study between two 

spatial reconstruction techniques, namely matched-filter and 

least-squares, using the synthesized DMA system, providing a 

trade-off in terms of the computational efficiency and the image 

reconstruction quality. The findings confirm that DMA-based 

CI systems offer a flexible and hardware-efficient solution for 

electromagnetic imaging, paving the way for advanced 

applications in security screening, biomedical imaging and non-

destructive testing. 

Keywords—Computational imaging, dynamic metasurface 

antennas, experimental results, image reconstruction. 

I. INTRODUCTION 

Electromagnetic imaging technologies have been widely 
adopted for various applications, including security screening, 
medical diagnostics, environmental monitoring and non-
destructive testing to name a few [1], [2], [3], [4], [5]. 
Traditional imaging techniques, such as synthetic aperture 
radar and phased array systems [6], [7], require either 
mechanically scanned apertures or a significant number of 
transmitters (TXs) and receivers (RXs) to achieve high-
resolution imaging. These approaches, while effective, 
impose limitations in terms of hardware complexity, cost and 
data acquisition time [8]. To address these challenges, 
computational imaging (CI) techniques [9], [10] have 
emerged as an alternative, leveraging advanced aperture 
designs and signal processing techniques to extract spatial 
information from a reduced number of measurements. 

A key enabler of CI is the use of dynamically 
reconfigurable metasurface antennas (DMAs) [11], [12], 
which offer a flexible and hardware-efficient alternative for 
generating spatially incoherent radiation patterns. Unlike 
conventional phased arrays that rely on phase shifters and 
multiple radio frequency chains, DMAs utilize tunable 
metamaterial elements to reconfigure their radiation patterns 
dynamically [11]. This allows for significant reductions in 
power consumption and system complexity while maintaining 
the ability to synthesize large effective apertures [13]. Recent 
advancements in DMA-based CI systems have demonstrated 
their potential for achieving high-resolution three-
dimensional (3D) imaging with minimal hardware 
requirements [13], [14], [15], [16], [17]. 

One promising approach to DMA-based CI involves 
configurations based on employing two 1D DMAs 
(orthogonally in a Mills Cross structure [16], [18] or an L-
shaped structure [19]) arranged to synthesize a 2D effective 
aperture. These configurations maximize spatial sampling 
efficiency while reducing hardware complexity. The use of 
multiple tuning states, or masks [13], further enhances spatial 
diversity, allowing the system to encode and retrieve scene 
information more effectively. While previous works have 
explored various CI frameworks using metasurface antennas, 
experimental validation of DMA-based systems and their 
systematic analyses as a function of different system 
parameters remains understudied. 

In this paper, we present an experimental investigation 
into CI using DMAs configured in an L-shaped arrangement. 
We describe the implementation of a DMA-based imaging 
system and evaluate its performance in retrieving target 
images. Through a systematic analysis of key system factors, 
including the number of masks, the number of frequency 
samples, the frequency bandwidth, and the image 
reconstruction algorithm, we assess the trade-offs between 
image quality and processing time. Our results demonstrate 
the effectiveness of the proposed system in achieving efficient 
microwave imaging and highlight the potential of DMAs for 
next-generation CI applications. 

The rest of this paper is organized as follows. In Section 
II, the system model is introduced. Section III describes the 
image reconstruction mechanism. In Section IV, the results of 
experimental studies using the CI system introduced in this 
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paper are presented and discussed. Finally, Section V is 
devoted to the conclusion. 

II. SYSTEM MODEL 

The CI system in this study utilizes two DMAs arranged 
in an L-shaped configuration to maximize spatial sampling 
efficiency (see Fig. 1). One of these DMAs functions as the 
TX, while the other one serves as the RX. Each DMA consists 
of sub-wavelength-sized metamaterial elements with their 
radiation response being controlled in a binary fashion, on or 
off, using diodes. During operation, the TX and RX DMAs 
cycle through a series of diode configurations, which 
modulate their radiation patterns. At a given time, each DMA 
aperture configuration, with a specific pattern of on/off 
element tuning states, constitutes a mask. This enables the 
system to acquire scene information through T R fM m m m=  

measurement modes, where T ,m  Rm  and fm  represent the 
number of TX masks, the number of RX masks, and the 
number of sampled frequency points, respectively. 

 
Fig. 1. General schematic of the imaging system. The DMAs aperture and 
the target are assumed to be located in the 0z =  and 0 0z z= >  planes, 

respectively. A picture of the actual imaging setup (experimental setup) is 
available in Fig. 4 of [19]. 

The TX and RX DMAs consist of Tn  and Rn  non-
uniformly spaced (sparse) unit cells, respectively, which are 
linearly distributed. This sparsity optimizes imaging 
capabilities while reducing hardware complexity [20]. Each 
unit cell is controlled (to be turned on and off) using a PIN 
diode, allowing for dynamic modification of the radiation 
pattern. To synthesize the DMA aperture, different unit cell 
topologies can be used (without loss of generality), including 
a variant of a circular complementary electric inductive-
capacitive element structure [19], which is also used in this 
work. 

III. IMAGE RECONSTRUCTION 

Mathematically, the interaction between the transmitted 
and received fields with the scene reflectivity is governed by 
the first Born approximation [21], which assumes weak 
scattering and linearizes Maxwell’s equations. Under this 

approximation, the backscattered signal at the receiver, 
denoted as g , is given by [13] 

 1 1 1,
M M N N M× × × ×= +g H ρ w  (1) 

where H  represents the system’s sensing matrix, defined by 
the dot product of the fields radiated by the TX and RX 
antennas (i.e., TX RX )

M N M N× ×∝ ⋅H E E  [22]. The scene’s 
reflectivity, ,ρ  is discretized into N  voxels, and w  
represents system noise. 

To reconstruct a 3D image of the scene, an estimate of the 
reflectivity distribution, ρ̂ , is obtained by solving an inverse 
problem. A commonly employed method is the least-squares 
(LS) estimation, which minimizes the following cost function 
[23], [24]: 

 2

2
ˆ arg min ,= −

ρ
ρ g Hρ  (2) 

where 
2

⋅  denotes the Euclidean norm. Due to the ill-posed 

nature of the inverse problem, regularization techniques such 
as Tikhonov regularization [25], sparsity constraints [26], or 
iterative solvers like the generalized minimum residual 
(GMRES) method [27] can be incorporated to enhance 
reconstruction accuracy and robustness against noise. 

An alternative reconstruction approach is the matched 
filter (MF), which is a single-shot reconstruction technique 
known for its robustness against noise. The MF solution is 
given by [28] 

 ˆ ,H=ρ H g  (3) 

where superscript ( )H⋅  denotes the conjugate transpose. The 

MF technique is computationally efficient and provides rapid 
image reconstruction, making it suitable for real-time 
applications. However, it may suffer from lower resolution 
compared to more sophisticated iterative techniques like LS 
reconstruction with regularization. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

In this section, the experimental results obtained by the CI 
system are presented and the parameters affecting the final 
outputs are discussed. All computations have been done on 
MATLAB R2022a running on a 64-bit Windows Server 2019 
operating system with 256 GB of random-access memory 
(RAM), a Xeon central processing unit (CPU) at 3.6 GHz, and 
an NVIDIA RTX A6000 graphics processing unit (GPU) with 
48 GB memory. Unless specified otherwise, each experiment 
utilized T R 15 15m m = ×  masks and f 51m =  frequency 
points uniformly distributed across the operating bandwidth of 
the fabricated DMAs (i.e., 18 to 20 GHz). This setup provided 
a total of 11,475 measurement modes, ensuring a 
comprehensive dataset for image reconstruction. To 
synthesize the DMA-based CI system, the fabricated DMA 
panels presented in [19] were used. The length of the antennas 
is 24.5 cm. A microcontroller board, interfaced with four 8-bit 
shift registers, governs the activation of diodes, dynamically 
altering the masks for both DMAs. The masks are randomly 
generated with an activation probability of 0.5.onp =  The 
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fields radiated at different frequencies by the different masks 
of each DMA, which must be characterized to compute the 
sensing matrix of the CI system, were measured in planar grids 
of 3233 spatial points at 10cmz =  using an open-ended 
waveguide probe. The experiments involve imaging a target 
consisting of 4 copper stripes with sizes 7.5cm 2cm×  (2 
horizontal and 2 vertical), as shown in Fig. 1, located at 

0 33cm.z =  The number of voxels considered to form the 

scene is 58 58 11;
x y z

N n n n= = × ×  and the size of each voxel 

is 4.5mm 4.5mm 20 mm.× ×  For image reconstruction, both 
the MF and LS techniques are used (as presented in Section 
III). In the case of the LS reconstructions, the GMRES 
iterative solver [29] is used. 

Fig. 2 shows the reconstructed image of the scene at 
33cmz =  ( xy  cross-sectional cut of the resulting 3D image 

at the range where the target is located) using the GMRES 
method with 30in =  iterations. In this figure, the positions of 
the TX and RX DMAs are marked with white dotted lines. 
The positions of the stripes are also outlined with white solid 
lines. It can be seen that in the reconstructed image, all four 
stripes can be identified in their correct positions. The 
processing times for implementing the image reconstruction 
technique on the CPU and GPU were 50.6 and 2.65 seconds, 
respectively. The computation time for constructing the 
sensing matrix on the CPU was 32.57 hours. Note that the 
computations related to constructing the sensing matrix are 
usually not considered part of the online (pure) processing; 
because it is independent of the target and depends only on the 
setup of the imaging system and the dimensions of the scene. 
Therefore, as long as the setup of the imaging system 
(including all parameters related to the TX and RX, and their 
positions) and the dimensions of the scene (including the 
position and size of the voxels) are fixed, the computations 
related to constructing the sensing matrix need to be carried 
out only once and can be done offline. 

 
Fig. 2. Reconstructed image of the target at 33cmz =  using the LS method 

with 30
i

n = . 

In Fig. 3, a comparison between the reconstructed images 
by the MF method and the LS method (with different numbers 
of iterations) is presented. In general, it can be qualitatively 
observed that the LS technique provides a better quality image 
(objects are better identified). It can also be deduced that 

increasing the number of iterations leads to an improvement 
in the quality of the images. This can also be investigated 
quantitatively, with the normalized mean squared error 
(NMSE) criterion [30], the results of which are given in Table 
I. By considering Fig. 2 as a reference image, it can be seen 
from Table I how the choice of the algorithm and its 
parameters can affect the final result. However, the 
improvement in the above results comes at the cost of 
increasing the computational cost. In Table I, the processing 
time corresponding to each image on both CPU and GPU is 
given. It is obvious that the GPU, due to its inherently 
massively parallel architecture, has increased the processing 
speed. This improvement is more noticeable in the case of 
heavier calculations. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Fig. 3. Reconstructed image of the target at 33cmz = , and with 

T R 15m m= = ; (a) using the MF method, (b) using the LS method with 

2
i

n = , (c) using the LS method with 10
i

n = , (d) using the LS method with 

30.
i

n =  

To investigate the effect of the number of masks on the 
final result, the number of TX and RX masks, Tm  and Rm , 
was reduced from 15 to 10 and then to 5. The obtained 
reconstructed images are shown in Fig. 4. Compared to the 
corresponding images in Fig. 3, it can be seen that the quality 
of the reconstructions decreased as the number of masks was 
reduced. This can also be verified by examining the NMSE 
data in Table I. As a result, it can be deduced that increasing 
the number of masks, which leads to a significant increase in 
the number of measurements, improves the quality of the final 
images. From the data in Table I, it can be seen that, unlike the 
MF method, reducing the number of measurements did not 
have a significant effect on reducing the processing time when 
using the LS method. The reason for this is that the size of 
input matrices and vectors of the image reconstruction 
algorithm based on the GMRES technique is mainly affected 
by the number of voxels rather than the number of 
measurements. However, reducing the number of 
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measurements speeds up the data acquisition process. Also, 
the time needed for constructing the sensing matrix on the 
CPU was reduced to 14.2 and 3.55 hours for T R 10m m= =  

and T R 5m m= = , respectively. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Fig. 4. Reconstructed image of the target at 33cmz = ; (a) using the MF 

method, and T R 10m m= = , (b) using the LS method with 30
i

n = , and 

T R 10m m= = , (c) using the MF method, and T R 5m m= = , (d) using the LS 

method with 30
i

n = , and T R 5m m= = . 

TABLE I.  COMPARISON OF NMSE VALUES AND PROCESSING TIMES 
CORRESPONDING TO THE RECONSTRUCTED IMAGES IN FIGS. 3 AND 4 

Figure NMSE Processing time 
on CPU (Sec) 

Processing time 
on GPU (Sec) 

3(a) 0.32 0.33 0.035 
3(b) 0.25 4.03 0.43 
3(c) 0.052 17.25 1.03 
3(d) 0 50.6 2.48 
4(a) 0.36 0.13 0.019 
4(b) 0.11 50.03 2.46 
4(c) 0.41 0.038 0.024 
4(d) 0.37 49.36 2.52 

 

To examine the reconstructed image along the range (z -
axis), Figs. 5(a) and 5(b) are extracted, corresponding to the 
output of the MF method and the LS method, respectively. It 
can be seen that the highest normalized powers, i.e., the range 
of 0 to -2 dB (bright areas), are concentrated around the true 
range of the target. Hence, it can be concluded that the 
synthesized DMA-CI system can successfully retrieve the 
location of the imaged target using both the MF and LS 
reconstructed techniques within the operating frequency band 
(18-20 GHz) sampled at f 51m =  frequency points. 

In the final experiment, the effect of reducing the 
bandwidth and the number of frequency samples, fm , on the 
results is investigated. Fig. 6 demonstrates the reconstructed 
images in the xy  and xz  planes using the MF and LS 
methods when the measurements include 26 frequency 

samples uniformly distributed in the frequency band 18-19 
GHz. Compared to the images in Fig. 3, it is observed that the 
reduction in the number of frequency samples, which is 
equivalent to a significant reduction in the total number of 
measurements, has resulted in almost one of the stripes (the 
upper stripe) not being identifiable. Also, compared to the 
image in Fig. 5, it is observed that in Figs. 6(c) and 6(d), 
sidelobes are dominant; so that it is not possible to extract the 
target range by visual inspection. Also, the reduction of 
bandwidth has led to the loss of range resolution. The 
calculated NMSE values corresponding to the reconstructed 
images by the MF and LS methods in Fig. 6 are 0.4 and 0.14, 
respectively. 

 
(a) 

 
(b) 

 
Fig. 5. Reconstructed image of the target at 0y = ; (a) using the MF 

method, (b) using the LS method with 30
i

n = . 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Fig. 6. Reconstructed image of the target in the 18-19 GHz frequency band 
and with f 26m = ; (a) at 33cmz =  and using the MF method, (b) at 

33cmz =  and using the LS method with 30
i

n = , (c) at 0y =  and using 

the MF method, (d) at 0y =  and using the LS method with 30
i

n = . 

It is worth noting that the reason why the upper stripe is 
seen as smaller in all images (despite the similar size of all 
stripes) is related to the configuration of the DMAs and the 
position of the stripes relative to it (see Fig. 2). By considering 
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the configuration of the DMAs, it is clear that the power 
distribution is maximum in the lower right corner (closer to 
the intersection of the TX and RX DMAs) and the further 
away from there, the less power is received. 

V. CONCLUSION 

This study experimentally validated a computational 
imaging system based on DMAs arranged in an L-shaped 
configuration. The results highlighted the impact of key 
system parameters, such as the number of masks, frequency 
samples, and reconstruction algorithms, on the final imaging 
performance. Increasing the number of masks significantly 
improved image fidelity, as more measurement modes 
enhanced spatial diversity. Similarly, a higher number of 
frequency samples resulted in better depth resolution, whereas 
reducing the bandwidth degraded the range resolution. 
Comparative evaluations between the MF and LS 
reconstructions confirmed that while the MF method provides 
rapid results, the LS method (particularly with iterative 
solvers) yields superior image quality at the cost of increased 
computational time. The study demonstrated the feasibility of 
DMA-based CI systems for real-world applications, offering 
a scalable and efficient alternative to conventional microwave 
imaging techniques. Future work will explore further 
optimizations, including real-time processing and advanced 
regularization techniques, to enhance performance in practical 
imaging scenarios. 
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