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Abstract—Recent 5G-Advanced cellular specifications intro-
duce several positioning enhancements, including carrier phase
measurements that enable high-precision 3D localization at the
accuracy scale of used radio frequency (RF) wavelength. Besides
localization, in numerous use cases from extended reality (XR)
headsets to industrial automation and heavy machines, accurate
knowledge of the device 3D orientation is of paramount importance
together with low latency operation. In this paper, utilizing multi-
sensor carrier phase measurements, we address high-precision
joint tracking of device 3D location and orientation, where the
full device state can be directly estimated at the network side,
thus enabling very low latency and response times for possible
device-related network actions. The proposed tracking approach
builds on extended Kalman filter framework, and is supplemented
with a particle filter solution which handles the challenging integer
ambiguity problem and maintains synchronization between the
network and device under clock drifting. Furthermore, multi-
frequency carrier phase measurements through carrier-aggregation
are addressed to further improve the performance. Based on
numerical evaluations, we show that the proposed 3D location
and orientation tracking achieves sub-centimeter and sub-degree
accuracy for position and orientation estimation, respectively, while
also enabling sub-nanosecond network synchronization.

Index Terms—3D orientation estimation, 3D positioning, 5G-
Advanced, 6G, tracking, carrier phase, integer ambiguity

I. INTRODUCTION

The advent of 5G-Advanced and beyond cellular technologies
has launched a new era of high-precision positioning tech-
nologies, essential for a myriad of applications ranging from
industrial automation to Vehicle-to-everything (V2X) and ex-
tended reality (XR) [1], [2]. Among these technologies, cellular
Carrier Phase Positioning (CPP) stands out due to its potential
to achieve sub-centimeter-level positioning accuracy [1], [3]. In
addition to tracking of 3D position of the device, tracking 3D
orientation while overcoming low latency requirements is of
great importance to many use cases from industrial automation
to XR and immersive holographic-type communications [4], [5].

Along with developments in 3rd Generation Partnership Project
(3GPP) standardization, research on cellular CPP has attained
growing attention in the literature [3], [6]–[9]. In [3], theoretical
bounds on CPP have been derived based on mixed integer pro-
gramming to properly address the challenging integer ambiguity
problem. In [6] and [7], CPP has been investigated in indoor and
Industrial Internet-of-Things (IIoT) scenarios, respectively, while
[8], [9] focus on CPP with multi-carrier measurements.
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Fig. 1. Illustration of the basic concept considering multi-frequency measure-
ments with a single BS, and a UE equipped with multiple antennas.

In this paper, we address high-precision and low-latency
3D location and orientation tracking of user equipment (UE),
equipped with multiple antennas, while using multi-frequency
carrier phase measurements. Through utilization of uplink mea-
surements, the proposed tracking approach enables close to real
time 3D orientation estimation at the network side, which is not
generally reachable by conventional UE-based methods utilizing,
for example, inertial sensors or Angle-of-Arrival measurements,
due to additional measurement reporting delays. Compared to
our earlier work in [5], the proposed extended Kalman filter
(EKF) based tracking approach introduces a specific cycle control
mechanism and utilization of multi-frequency measurements for
handling integer ambiguity problem in high mobility scenarios.
Additionally, to further push the limits of tracking performance, we
formulate a particle filter solution on top of the EKF framework,
which shows superior tracking performance for large measurement
intervals or high UE mobility.

The main contributions of this paper are given as follows:
• We formulate multi-sensor and multi-frequency EKF-

based tracking for user 3D localization and 3D orientation
estimation using carrier phase measurements;

• We propose a specific consecutive EKF measurement
update processing, which increases tolerance against
integer ambiguity issues in high mobility scenarios;

• We formulate a particle filter solution to extend the
tracking capability to even higher mobility scenarios;

• We assess the performance of proposed methods in a
dynamic scenario with varying 3D location and 3D
orientation of the UE along with a drifting UE clock.

The rest of the paper is organized as follows: Section II
describes the system model for carrier phase measurements and
Section III introduces the proposed tracking methods, including
EKF and particle filter solutions. Finally, Section IV presents
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the numerical evaluations, and Section V concludes the paper.

II. SYSTEM MODEL

In this section, we describe the considered 3D localization
and orientation tracking concept, and define the measurement
model for the considered carrier phase measurements.

A. General Concept and Unknown UE State Vector

We consider a system with a moving and rotating UE and
M stationary base stations (BSs) or other network transmis-
sion/reception points (or even distributed antenna points) with
known locations and orientations. In Fig. 1, the considered
system is illustrated for a single BS and UE located at pBS
and pUE, respectively. The UE is equipped with N antennas
at positions ρn, defined relative to the UE position in the BS
reference coordinate frame (x,y,z) for n = 1, . . . , N . Assuming
pUE as the center point of rotation, the 3D UE orientation can
be altered through rotations of z-axis, y-axis and x-axis, which
describe the device yaw α, pitch β and roll γ, respectively.

The considered system can be applied to both downlink and
uplink scenarios and incorporate carrier phase measurements
from Q frequency bands. Furthermore, BSs are assumed
mutually synchronized, while the UE clock is unsynchronized
and drifting in time. At time instant k, the time-varying UE
clock δk is defined as [10]

δk = δk−1 +∆δk∆t

∆δk = ∆δk−1 + ξk,
(1)

where ∆t denotes the measurement interval between two
consecutive time instants, and ∆δk is a time-varying clock
skew with ξk ∼ N (0, σ2

ξ ).
The unknown state vector at time step k, incorporating the

six degrees-of-freedom (6DoF) state parameters and a drifting
clock of the UE, is determined as

sk =
[
θT
k ∆θT

k pT
UE,k vT

UE,k δk ∆δk

]T
∈ R14 (2)

where θk = [αk, βk, γk]
T describes the 3D UE orientation,

and pUE,k = [xUE,k, yUE,k, zUE,k]
T is the UE position with the

x, y and z coordinate. Furthermore, UE motion is represented
with the rotational rate-of-change ∆θk = [∆αk,∆βk,∆γk]

T ,
including distinct rates-of-change of rotation angles α, β and
γ, respectively, and the UE velocity vUE,k = [vx,k, vy,k, vz,k]

T ,
defined relative to the x-axis, y-axis and z-axis, respectively.

B. Measurement Model

The considered system utilizes antenna-level carrier phase
measurements between the N UE antennas and M BS antennas.
For the kth time step and qth frequency band, the carrier phase-
based range measurements between the nth UE antenna and
mth BS can be written as

ϕq
n,m,k = hq

n,m(sk) + nq
n,m,k, (3)

where hq
n,m : R14 → R is the measurement function, and

nq
n,m,k ∼N (0, σ) denotes measurement noise with variance

σ. Moreover, let us assume a signal wavelength of λq=c/fq ,

where c and fq are the speed of light and carrier frequency of
the qth frequency band, respectively. Then, the measurement
function, describing an ambiguous range measurement, can be
expressed as [11]

hq
n,m(sk)=∥pUE,k+R(θk)ρn−pBS,m∥+cδk−Zq

n,m,kλq, (4)

where the norm term and Zq
n,m ∈ Z indicate the range and

integer ambiguity between the nth UE antenna element and mth

BS. In addition, the term cδk represents the ranging bias due
to UE clock error, and R(θ) ∈ R3×3 is the 3D rotation matrix
[12] realizing the UE orientation. It is noted that in practice
carrier phase measurements are indeed phase measurements,
however, the range measurements in (3) and (4) can be easily
expressed in radians as 2πϕq

n,m,k/λq .
Considering sequential measurements over time index k, it

is possible to obtain unwrapped carrier phase measurement

Φq
n,m,k = Zq

m,n,1λq + U(ϕq
n,m,k) + Ψq

m,n,kλq (5)

where Zq
m,n,1 is the integer ambiguity at first time step

k = 1. Furthermore, U(ϕq
n,m,k) = ϕq

n,m,k + Ψq
m,n,kλq is an

unwrapping function where Ψq
m,n,k∈ Z is chosen so that the

difference between consecutive fractional range measurements
is within the half-wavelength (|ϕq

n,m,k−1 − ϕq
n,m,k| < λq/2).

The unwrapped measurements can be seen as cumulative range
measurements subject to clock bias.

III. PROPOSED METHODS

In this section, we present the proposed EKF-based track-
ing formulation with specific cycle control mechanism and
utilization of multi-frequency measurements. Furthermore, we
describe a particle filter-based solution to improve tolerance
against cycle slips in high mobility scenarios.

A. State-Transition Model and State Prediction

We assume that the UE velocity, rotational rate-of-change
and clock drift are near constant over a short time period. Con-
sequently, we employ a linear constant white-noise acceleration
(CWNA) mobility model [13] and express a state-transition
between time steps k − 1 and k as

sk = Fsk−1 +wk (6)

where F ∈ R14×14 is the state-transition matrix, and wk ∼
N (0,Q) ∈ R14 is the process noise. Furthermore, the state-
transition matrix is expressed as

F = blkdiag(F⊗I3,F⊗I3,F), where F =

[
1 ∆t
0 1

]
, (7)

where ⊗ denotes the Kronecker product and
blkdiag(A1,A2,A3) refers to a block diagonal matrix
constructed from matrices A1, A2, and A3 in respective
order. By following the CWNA model in [13], the process
covariance matrix Q ∈ R14×14 is defined as

Q = blkdiag(σ2
∆θQ⊗ I3, σ

2
vQ⊗ I3, σ

2
∆δQ) ∈ R14×14,

where Q =

[
∆t3

3
∆t2

2
∆t2

2 ∆t

]
.

(8)
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The magnitude of process covariance is assessed through
parameters σ2

∆θ, σ2
v and σ2

∆δ , which describe the power spectral
density of angular acceleration of rotation angles (α, β and
γ), UE acceleration with respect to component axes (xUE, yUE,
zUE), and acceleration of clock error, respectively. Finally, given
the state-transition model in (6), the prediction step of the EKF
at time index k is expressed as

ŝ−k = Fŝ+k−1

P̂
−
k = FP̂

+

k−1F
T +Q

(9)

where ŝ−k ∈ R14 and P̂
−
k ∈ R14×14 are the a-priori estimates

of the mean and covariance of the UE state, respectively.
Furthermore, ŝ+k−1 and P̂

+

k−1 denote the mean and covariance
for the a-posteriori state estimate of the previous time step k− 1.

B. Addressing Varying Integer Ambiguity via Cycle Control

UE motion induces a varying integer ambiguity, which could
be tracked as part of the UE state [5]. However, considering the
unwrapped measurements in (5), if the ambiguous range mea-
surement ϕq

n,m,k does not change more than half-wavelength
between consecutive time steps (∀(k, n,m)Ψq

m,n,k = 0), the
unwrapped measurements provide effectively an unambiguous
range measurements. However, with high UE state dynamics,
the change in range measurements between consecutive time
steps can cover multiple wavelengths (∃(k, n,m)Ψq

m,n,k ̸= 0)
which is not captured by the unwrapping function U(ϕq

n,m,k).
Considering the availability of a predicted UE state ŝ−k , pos-

sible cycle jumps over multiple wavelengths with unwrapped
measurements can be recursively approximated as

Ψ̂q
m,n,k=

{
Ψ̂q

m,n,k−1, |εqn,m| < λq/2,

Ψ̂q
m,n,k−1 +R(εqn,m/λq), otherwise,

(10)

where for the first time index Ψ̂q
m,n,1 = 0. Moreover, εqn,m =

Φq
n,m,k−hq

n,m,k(ŝ
−
k ) denotes the measurement innovation, and

R(·) is a rounding function to nearest integer. Finally, utilizing
(10), while assuming initial integer ambiguity estimate at k = 1
as Ẑq

m,n,1, the unwrapped measurements with cycle control are
expressed as Φ̂q

n,m,k = Ẑq
m,n,1λq + U(ϕq

n,m,k) + Ψ̂q
m,n,kλq .

C. EKF-based Measurement Update with Cycle Control

For notational convenience, the measurement function in
(4) and the unwrapped measurements with cycle control
from Section III-B, are concatenated over all UE antennas
and BSs as hq(sk) = [hq

1,1(sk), h
q
2,1(sk), . . . , h

q
N,M (sk)] and

Φ̂
q

k = [Φ̂q
1,1,k, Φ̂

q
2,1,k, . . . , Φ̂

q
N,M,k], respectively. As a result, by

following (3), the measurement covariance for the concatenated
measurements reads Σ = σ2IMN ∈ RMN×MN .

Utilizing measurements from the qth frequency band, the
a-posteriori estimates of the mean and the covariance can be
obtained by the EKF update as

ŝ+k = ŝ−k +Kk(Φ̂
q

k − hq(ŝ
−
k ))

P̂+
k = (I14 −KkHk)P̂

−
k ,

(11)
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Fig. 2. Illustration of the proposed consecutive measurement update process.

where Kk = P̂−
k H

T
k (HkP̂

−
k H

T
k +Σ)−1 is the Kalman gain.

Furthermore, Hk ∈ RMN×14 is the Jacobian matrix for
attaining a linear approximation of the non-linear measurement
function. Based on the measurement function (4), the non-zero
partial derivatives for Hk are given as

∂hq
n,m(s)

∂θ
=

ΓT
n (θ)(pUE +R(θ)ρn − pBS,m)

∥pUE +R(θ)ρn − pBS,m∥
∂hq

n,m(s)

∂pUE
=

pUE +R(θ)ρn − pBS,m

∥pUE +R(θ)ρn − pBS,m∥
,

∂hq
n,m(s)

∂δ
= c, where

(12)

Γn(θ) =
[
∂R(θ)
∂α ρn

∂R(θ)
∂β ρn

∂R(θ)
∂γ ρn

]
. (13)

The detailed formulations for the partial derivatives of R(θ)
with respect to α, β and γ in (13) can be found in [5].

D. Utilization of Multi-Frequency Measurements

Traditionally the EKF update considers all measure-
ments jointly, thus feeding all multi-frequency measurements
[Φ̂

1T

k , · · · , Φ̂
QT

k ]T into the update step in (11) simultaneously.
In the following, we refer to this as a joint EKF update. Since
the update stage is sensitive to state prediction accuracy through
measurement model linearization as well as cycle slips in
measurement unwrapping, large UE state dynamics can confuse
the EKF update and lead to filter divergence in the worst case.

To diminish the effect of integer ambiguity issues with high
carrier frequencies, we propose updating the EKF consecutively
per carrier frequency such that the updated UE state using a
lower carrier frequency q − 1, denoted as s̃+k,q−1, is used as
the input to the update with a higher carrier frequency q. By
this way, the improved UE state estimate using a low carrier
frequency assist in cycle control of higher carrier frequencies.
In the following, we refer to this as a consecutive EKF update.
Compared to the joint update, the benefit of consecutive update
is the improved tolerance against integer ambiguity problem in
high mobility scenarios. The consecutive measurement update
process is visually illustrated in Fig. 2.

E. Particle Filter Solution for Improved Integer Ambiguity
Tolerance in High Mobility Scenarios

Whereas the EKF is limited to a single a-posteriori state
estimate ŝ+k , particle filter represents the a-posteriori state
estimate with a set of particles {s(j)k , w

(j)
k }Np

j=1, inherently
enabling tracking with arbitrary-shaped probability distributions.
With large and dynamic state vector, it is often challenging
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Algorithm 1 Particle filter processing at time step k

Input: Particle-wise states from previous time step (mean s
(j)
k−1 and

covariance P
(j)
k−1) and particle weights w

(j)
k for j = 1, · · · , Np

1: for j = 1, . . . , Np do
2: Perform EKF prediction for jth particle according to (9)
3: Perform EKF update for jth particle according to (11)
4: Sample from a posteriori distibution by EKF update in (11)
5: Update weights using (14), and normalize to ensure Σjwj = 1
6: end for
7: if 1/Σjw

2
j < Nth then

8: Resample with replacement
9: end if

Output: Updated particle-wise states (mean s
(j)
k and covariance P(j)

k )
and particle weights w

(j)
k for j = 1, · · · , Np

to find a good proposal distribution for particle sampling.
Therefore, in this paper, we utilize EKF-based particle filter
[14], which performs particle-wise EKF prediction and update
phases to find a suitable importance density. After each
sampling round, the particle weights can be updated as

w
(j)
k ∝ w

(j)
k−1

p(Φ̂q
n,m,k|s

(j)
k )p(s

(j)
k |s(j)k−1)

π(s
(j)
k |s(j)k−1, Φ̂

q
n,m,k)

, (14)

where p(Φ̂q
n,m,k|s

(j)
k ) is the measurement likelihood density,

p(s
(j)
k |s(j)k−1) is the prior density, and π(s

(j)
k |s(j)k−1, Φ̂

q
n,m,k) is

the proposal density. If particle efficiency 1/Σjw
2
j drops below

a given efficiency threshold Nth, particles are resampled (we
define Nth = Np/2). The involved steps of the utilized particle
filtering approach are summarized in Algorithm 1.

Due to approximative nature of particle filters, the tracking
accuracy of a particle filter cannot often be improved compared
to EKF under mildly nonlinear measurement models. However,
when considering high mobility scenarios with challenging
integer ambiguity resolution, the utilized particle filter approach
enables tracking of multiple parallel EKF branches from which
only the most probable ones survive over time. As such, the
tolerance against cycle slips can be improved, but at the cost
of higher computational complexity proportional to the number
of employed particles.

IV. NUMERICAL RESULTS

In this section, we provide the numerical results, focusing
on the accuracy of UE positioning and orientation estimation
as well as clock synchronization achieved by the proposed
carrier-phase-based tracking methods. We consider an example
UE track of 60 s duration with varying 3D position and 3D
orientation along with UE clock drifting. The UE is equipped
with N = 6 antennas placed at corner points of a cube
(excluding two opposite corners) with a side length of 5 cm and
centered at the UE position. Furthermore, around the UE track,
M = 4 base stations are located at coordinates [0,−6, 3.5]T ,
[−8, 7, 3]T , [7, 6, 2.5]T and [−1, 2, 7]T . The drifting UE clock
is parametrized with a clock skew σ2

ξ = 10−10, which results
in clock-originated range drifting of tens of meters during the
track. To obtain an initial state estimate, we perform a brute

TABLE I
AVERAGE EKF TRACKING ERRORS

Average error ∆t = 20 ms ∆t = 60 ms

[mm] / [deg] / [ps] pos. orient. clock pos. orient. clock

Single frequency
3.5 GHz 0.57 0.20 0.88 0.61 0.26 1.01
15 GHz 0.14 0.06 0.24 fail fail fail
28 GHz 0.08 0.03 0.16 fail fail fail

Multi-frequency with consecutive update
3.5&15 GHz 0.14 0.05 0.24 0.25 0.06 0.39
3.5&28 GHz 0.08 0.03 0.16 0.22 0.04 0.34
3.5&15&28 GHz 0.07 0.03 0.15 0.22 0.03 0.34

Multi-frequency with joint update
3.5&15 GHz 0.14 0.05 0.24 fail fail fail
3.5&28 GHz 0.08 0.03 0.16 fail fail fail
3.5&15&28 GHz 0.07 0.03 0.15 fail fail fail

force grid search algorithm. Finally, the standard deviation of
measurement noise σ is determined as 1% of the wavelength,
and the simulations are performed over 100 random trials.

At first, we study the EKF tracking performance over different
carrier frequencies, reflecting potential Frequency Range (FR)1,
FR2 and FR3 carriers, while assuming two separate measure-
ment update intervals ∆t = 20ms and ∆t = 60ms. To this
end, in Table I, the average EKF tracking errors for the UE 3D
position (mm), 3D orientation (deg), and clock (ps) are presented
for different frequency combinations and for both the traditional
joint EKF update method as well as the proposed consecutive
update method. The results show that with the smaller update
interval of 20ms the higher carrier frequencies enable smaller
estimation errors, thus indicating that the integer ambiguity
can be sufficiently resolved. However, when increasing the
update interval to 60ms, tracking with higher frequencies lead
to unstable filter operation and eventually cause tracking failures,
denoted as ’fail’ in Table I. Such tracking failures occur because
the measurement interval becomes too large with respect to
the wavelength, resulting in inaccurate UE state prediction and
eventually causing filter divergence after multiple successive
cycle slips. With multi-frequency measurements, similar trend
can be seen for the traditional joint EKF update, where using
high frequencies clearly limit the performance at the higher
measurement interval. However, the proposed consecutive EKF
update method is able to operate over all aggregated frequencies
and both measurement intervals, while clearly improving the
performance compared to single frequency measurements.

To investigate the effect of measurement update interval ∆t
on the tracking performance in more detail, Fig. 3 presents
the average positioning error of EKF-based tracking as a
function of the measurement update interval. For all EKF
tracking approaches, the positioning error increases gradually
in proportion to the measurement update interval, until the per-
formance collapses, as the update interval becomes intolerable
and filters diverge. As a reference, to prove the usability of
the proposed cycle control method, proposed in Section III-B,
also the performance without using the cycle control method is
shown to fail already below 10ms update interval. Regarding
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Fig. 3. Average positioning error for EKF tracking as a function of
measurement interval ∆t, consdering multiple frequency combination options.

multi-frequency measurements, joint and consecutive update
approaches reach similar positioning accuracy with small
measurement update intervals, but the proposed consecutive
update approach is able to operate without failures up to 150ms
whereas the joint update approach collapses below 50ms.

To further extend tolerable measurement update intervals and
simultaneously support high mobility scenarios, we utilize the
particle filter presented in Section III-E. To this end, Table II
shows the positioning performance for the proposed particle
filter using 10, 100 or 1000 particles, including also the EKF
approach as a reference. It is noted that the computational
complexity of the particle filter increases in proportion to the
number of used particles Np. Furthermore, the performance is
evaluated for a single frequency scenario at 3.5GHz carrier
and a carrier-aggregated scenario with 3.5GHz, 15GHz and
28GHz carriers using consecutive measurement update while
considering measurement update intervals up to 200ms. First,
the Table II shows tracking availability, which indicates the
percent of the random realizations that were successfully carried
out without filter divergence. After this, the average positioning
errors are shown only for successful realizations (i.e., not
over all realizations as in Fig. 3). When considering large
measurement intervals with sufficient number of employed
particles (Np ≥100), the results indicate that the proposed
particle filter can considerably improve the tracking availability
compared to the EKF. However, when filtering operates correctly
without diverging, the EKF shows the best positioning accuracy,
as the particle filter is limited to approximative estimation
through particle distributions. In the multi-frequency scenario
the proposed particle filter with Np=100 and Np=1000 reaches
100% availability up to 200ms measurement interval.

V. CONCLUSIONS

In this paper, we studied carrier phase-based tracking of 3D
position and 3D orientation of a UE equipped with multiple
antennas. Based on EKF framework, we proposed a cycle control
mechanism and a specific consecutive measurement update
scheme to improve tolerance against integer ambiguity errors.
In addition, to further extend the tracking capability to large

TABLE II
PARTICLE FILTER PERFORMANCE IN TERMS OF TRACKING

AVAILABILITY AND AVERAGE POSITIONING ERROR

3.5 GHz 3.5&15&28 GHz

∆t [ms] 120 160 200 120 160 200

Availability [%]
EKF 100 56 0 100 75 0
Particle Np = 10 100 94 0 31 0 0
Particle Np = 100 100 100 13 100 100 100
Particle Np = 1000 100 100 81 100 100 100

Average positioning error without failures [mm]
EKF 0.99 1.58 - 0.84 1.48 -
Particle Np = 10 1.07 1.64 - 0.84 - -
Particle Np = 100 1.03 1.63 3.10 0.84 1.48 2.32
Particle Np = 1000 1.03 1.62 3.90 0.84 1.48 2.32

measurement intervals and high mobility scenarios, we presented
a complementary particle filter solution, utilizing the above-
discussed EKF framework. The numerical results indicate that
the proposed EKF with cycle control provides a good accuracy
for relatively large measurement update intervals, extending
multiple wavelengths in range. Moreover, particle filters can
help in further increasing the update interval and avoiding
filter divergence due to cycle slips. In all considered scenarios,
the proposed tracking approaches reach sub-degree orientation
estimation accuracy and sub-centimeter positioning accuracy,
thus indicating promising aspects for future development.
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