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Abstract—We introduce FLEX, a family of fast Fourier
transform(FFT)-based low complexity beamspace channel esti-
mation algorithms for mmWave MIMO-OFDM systems, enabling
five-dimensional parameter estimation; delay, two-dimensional
angles of arrival (AoAs), and two-dimensional angles of departure
(AoDs). FLEX operates without prior knowledge of the number
of propagation paths and automatically pairs multidimensional
parameters. The proposed methods first estimate path delays
using an FFT-based approach, then compensate for these delays
to decouple the spatial dimensions. Angle estimation is performed
using either a correlation-based or shift-invariance property-
based methods, accommodating different precoder structures. A
modified approach resolves paths that share a delay bin but
are separable in angular domain. Simulation results demon-
strate that FLEX significantly reduces computational complexity
while achieving accuracy comparable to state-of-the-art methods,
converging to theoretical bounds at lower transmit power. Its
efficiency and adaptability make FLEX well-suited for real-time
channel estimation in wideband communication systems.

Index Terms—Channel Estimation, MIMO-OFDM, hybrid ar-
ray, angle-of-arrival, angle-of-departure, time-of-arrival.

I. INTRODUCTION

M Illimeter-wave (mmWave) MIMO is fundamental for
next-generation wireless networks, offering high data

rates and massive connectivity [1]. The combination of high
carrier frequencies and large-scale antenna arrays in mmWave
systems offers significant beamforming gains, yet also poses
challenges in channel estimation. Unlike sub-6 GHz systems,
mmWave channels typically exhibit sparse multipath propaga-
tion with only a few dominant clusters [2]. To fully exploit
this sparsity, accurate and efficient estimation of the high-
dimensional channel parameters, such as time of arrival (ToA),
angle of arrival (AoA), and angle of departure (AoD), is
critical, especially for wideband systems.

Existing methods for channel estimation include subspace
methods, compressed sensing, tensor decomposition, and their
combinations. Subspace methods require orthogonality, suffer
in low signal-to-noise ratio (SNR), and often need pairing
between estimated parameters. Compressed sensing (e.g. or-
thogonal matching pursuit (OMP), Bayesian recovery [2], [3])
performs well but their performance depends on grid resolu-
tion and computational costs increase with large bandwidths.
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Tensor decomposition methods (such as RD-BeamESPRIT [4]
and CP decomposition) provide low-complexity estimates, but
demands high SNR and often assume a fixed number of paths.
Furthermore, existing methods either assume prior knowledge
of the number of paths [2], [5], structural constraints such as
beam orthogonality [3], require parameter pairing [6], or incur
a high computational cost [2], [3]. These limitations highlight
the need for robust, low-complexity estimation techniques.

In this paper, we propose FLEX, a family of low-complexity
solutions for five-dimensional channel parameter estimation
(2D AoA, 2D AoD, and delay) tailored to mmWave MIMO-
OFDM. FLEX leverages the asymmetries in the resolutions
in a practical mmWave setup, and extracts path delays via a
discrete Fourier transform (DFT)-based approach, then isolates
each path in the spatial domain. No prior knowledge of the
number of paths is required. We develop two variants, one
using correlation-based beam alignment and another using an
estimation of signal parameters via rotational invariance tech-
niques (ESPRIT)-based method, to utilize the orthogonality
structure in the beamforming design. A further modification
resolves paths with identical delays but separable angles.
With numerical simulations, we evaluated FLEX against the
state-of-the-art (SoTA) methods in terms of accuracy, range
resolution, and computational complexity.

Notations: Matrices are bold uppercase (A), vectors bold
lowercase (a), element indices superscripts (ai), and tensors
calligraphic (X ). Operations include transpose (·)T, conjugate
(·)∗, conjugate transpose (·)H, tensor unfolding [·]x, Khatri-
Rao product (⋆), and Kronecker product (⊗). IM ∈ RM×M

is the identity matrix, and 0M ∈ CM×1 is an all-zeros vector.
arg(exp(jω)) = ω, and (·)† is the Moore–Penrose inverse.

II. SYSTEM MODEL

A. Channel Model

The base station (BS) and user equipment (UE) each
have uniform rectangular array (URA) antennas with NBS =
N1 × N2 and NUE = N3 × N4 elements (NBS >> NUE).
Communication occurs in the mmWave band with limited
scattering [7]. In addition to the line-of-sight (LoS), L − 1
scattering points exist, each contributing a single propagation
path with a single bounce [8]. The frequency domain channel
H(f) ∈ CNUE×NBS is [9]

H(f) =

L−1∑
l=0

αlaUE(ϕl)a
T
BS(θl)e

−j2πfτl , (1)
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where αl is the complex gain of path l, and aUE ∈ CNUE

and aBS ∈ CNBS are the steering vectors for the UE and
BS, with spatial frequencies ϕl and θl, associated with two-
dimensional AoA and AoD, respectively. They are defined as
aUE = aN3(ω

3
l ) ⊗ aN4(ω

4
l ) and aBS = aN1(ω

1
l ) ⊗ aN2(ω

2
l ),

where aN (ω) =
[
1, ejω, . . . , ej(N−1)ω

]
. Here, ω1,2

l = θl

and ω3,4
l = ϕl are spatial frequencies of the AoD and AoA,

respectively, where ω1,3
l correspond to the horizontal axis of

the antennas, and ω2,4
l to the vertical axis. The propagation

delay is τl, and f denotes the working frequency.
B. Signal Model

Consider a downlink scenario where the BS transmits S
orthogonal frequency division multiplexing (OFDM) blocks,
each with M symbols across K subcarriers. For subcarrier k,
symbol m, and block s, the received signal at the UE is

ym,s,k = wH
mH(k∆f)fs + qm,s,k, (2)

where wm ∈ CNUE×1 and fs ∈ CNBS×1 are the UE combiner
and BS precoder, respectively, ∆f is the subcarrier spacing,
and qm,s,k is the additive noise. The precoder and combiner
are linked to a single radio frequency chain (RFC).

Stacking (2) into a tensor Y ∈ CM×S×K , where Ym,s,k =
ym,s,k, we express the received signal as the perturbed canon-
ical polyadic (CP) model [10]–[12]

Y = H+Q, (3)
where H = C ×1 B1 ×2 B2 ×3 B3, with C ∈ CL×L×L

satisfying Cl,l,l = αl and zero elsewhere, and Q is the
additive noise whose entries are i.i.d. circularly symmetric
complex Gaussian, i.e., Qs,m,k = qs,m,k ∼ CN (0, σ2

q ). The
factor matrices B{1,2,3} ∈ C{M,S,K}×L have columns b1,l =
WHaUE(θl), b2,l = FTaBS(ϕl), and bk

3,l = e−ȷ2π∆fkτl .
Here, W = [w0, . . . ,wM−1] and F = [f0, . . . , fS−1], are
designed via codebook-based beam switching [13] and have
Kronecker structures: F = T∗

1⊗T∗
2 and W = T3⊗T4 [14],

where Tr ∈ CNr×Mr and M1M2 = S, M3M4 = M .

III. PROPOSED CHANNEL ESTIMATION METHOD

We introduce a channel estimation framework that sequen-
tially estimates the parameters of each dimension, starting
with delay estimation (where the resolution is highest) and
decoupling each from the observed tensor. Details follow.

A. Unfolding Operation

To estimate the channel’s delay, we create the third unfold-
ing matrix of the tensor Y , expressed as [Y](3) ∈ CK×SM .
This operation rearranges the delay-associated slice as the
frontal slice. Following (3), we get

[Y](3) = [H](3) + [Q](3). (4)
Equation (4) is valid because the unfolding operations pre-
serve the structure of tensors of identical sizes [15], and
matrix addition is commutative. Defining V = B1 ⋆ B2 =
[v0,v1, . . . ,vL−1] ∈ CSM×L, [H](3) is modeled as [16]

[H](3) = B3ΛVT =
∑
l

αlb3,lv
T
l , (5)

where Λ ∈ CL×L is a diagonal matrix such that Λl,l = αl.

B. Delay Estimation

To simplify delay estimation from raw observed signals,
we apply the DFT. The method incorporates non-coherent
combining across symbols and transmissions to enhance SNR,
followed by thresholding and peak detection for accurate delay
estimation.

1) DFT and Periodogram: Let ys ∈ CK×1, where each
component yk

s is defined as yk
s = ([Y]k,s(3))

∗
for s ∈

{0, 1, . . . , SM − 1}. The kDFT-th DFT coefficient of ys is

F(ys, kDFT) =
1

K

K−1∑
k=0

yk
se

−j2π
kDFT
KDFT

k
, (6)

which based on (4), is decomposed to
F(ys, kDFT) = F(hs, kDFT) + F(qs, kDFT), (7)

where kDFT ∈ {0, 1, . . . ,KDFT − 1}, qk
s = ([Q]k,s(3))

∗
and

hk
s = ([H]k,s(3))

∗
. According to (5), hs contains the conjugate

elements of the delay vector b3,l, with a DFT of

F(hs, kDFT) =
1

K

L−1∑
l=0

(αlv
s
l )

∗ 1− ej2K∆ωl

1− ej2∆ωl
(8)

where ∆ωl = π(∆fτl− kDFT
KDFT

). Considering hs across different
s is independent of k, we treat hs as observations from
multiple snapshots. The periodogram averaging of multiple
snapshots based on Bartlett’s method [17], is calculated as

P(ys, kDFT) =
1

SM

SM−1∑
s=0

|F(ys, kDFT)|2 . (9)

2) Thresholding and Peak Detection: For thresholding, we
utilize the cell averaging constant false alarm rate (CA-CFAR)
detection mechanism [18], incorporating a threshold factor
based on a desired false alarm probability pFA (manual
threshold). The selection of CA-CFAR is motivated by the
problem of signal periodogram leakage into the sidelobes,
which makes detectors with a fixed threshold suboptimal in
the Neyman-Pearson sense [19]. According to the Cauchy-
Schwarz inequality and (7), P(ys, kDFT) is bounded as

P(ys, kDFT) ≤ P(hs, kDFT) + P(qs, kDFT). (10)
To determine the threshold, we analyze the noise peri-
odogram. The noise DFT output follows a complex Gaussian
distribution with zero mean and variance σ2

q/K, leading
to a Gamma-distributed noise periodogram P(qs, kDFT) ∼
Γ(SM, σ2

q/(SMK)). The threshold factor ξ is derived from
the inverse Gamma cumulative distribution function, Γ−1(·),
for a given false alarm probability pFA, as

ξ = Γ−1
(
pFA|SM, σ2

q/(SMK)
)
/
(
σ2
q/K

)
. (11)

This ensures Neyman-Pearson detection under noise-only con-
ditions while compensating for sidelobe leakage when signals
are present. A neighborhood is selected if

P(ys, kDFT) ≥ ξE[P(ys, j)], (12)
for all j within the training cells [18].

The next step involves identifying the peaks of the neigh-
borhoods that exceed the threshold. Assuming K ≫ 1, the

921



DFT of hs at frequency kDFT in (8) is approximated by

F(hs, kDFT) ≈
L−1∑
l=0

(αlv
s
l )

∗
ej

∆ωl
2 (K−1) sinc(K

∆ωl

π
). (13)

Consequently, the periodogram of hs is approximated as

P(hs, kDFT) ≈ K

L−1∑
l=0

|αl|2
∣∣∣∣sinc(K∆ωl

π
)

∣∣∣∣2, (14)

yielding a resolution of ∆ω = 2π/K. We select local maxima
k̂i that exceed the CA-CFAR threshold as defined in (12) and
are separated by at least the resolution value 2KDFT/K (i.e.
eliminating multiple detections from a single resolution cell).
Delay estimates are calculated using τ̂i = k̂i/ (∆fKDFT) .

C. Decoupling Observed Tensor from Delay

Let τ̂i ∈ {τ̂0, τ̂1, . . . , τ̂L̂−1} = {τ0, τ1, . . . , τL−1}1 where L̂

is the number of estimated delays. We define a matrix B̂3, such
that B̂k,i

3 = e+ȷ2π∆fkτ̂i . This matrix is related to B3 through a
permutation matrix Π, as B̂3 = B3Π. The third mode product
between Y and B̂3 decouples the delay dimension as

Ysub = Y×3B̂
†
3 = Hsub +Qsub, (15)

where Hsub = C×1B1×2B2×3Π and Qsub = Q×3B̂
†
3. As

Π only reorders the slices from l to i, the sub-tensor Hsub

can be represented as a concatenation of L̂ tensors [16]
Hsub = Hsub,0 ⊔Hsub,1 ⊔ . . . ⊔Hsub,L̂−1, (16)

where Hsub,i = αib1,i ◦ b2,i. To decouple the delay of the
i-th path, we extract the i-th slice of Ysub, and unfold it to the
vector xi defined as xi = [Y :,:,i

sub ](1). The vector xi is modeled
as xi = ai + qi where qi = [Q:,:,i

sub](1), and ai = [Hsub,i](1).

D. Angle Estimation

The vector ai is expressed as ai = αi (u3,i ⊗ u4,i) ⊗
(u1,i ⊗ u2,i) ∈ CMS×1

, where ur,i = 1/
√
MrT

H
r aNr

(ωr
i ) ∈

CMr×1 and can be rearranged to Ai ∈ CM3×M4×M1×M2 as
Ai = u3,i ×1 u4,i ×2 u1,i ×3 u2,i ×4 αi. (17)

According to alternating optimization (AO) procedure [20], ωr
i

is estimated from ur,i, given fixed αi. The mode-j unfolding
of Ai yields a rank-one matrix [Ai](j) = αiu3,i(u4,i⊗u1,i⊗
u2,i)

T and follows a cyclic pattern across different modes (i.e.,
j → r : 1 → 3, 2 → 4, 3 → 1, 4 → 2). However,
direct access to ai is unfeasible from measurements; thus,
we transform xi into a four-dimensional tensor Xi, mirroring
the structure in (17). Upon unfolding this tensor to [Xi](j),
we apply singular value decomposition (SVD) to estimate
ui,r by extracting the principal left-hand eigenvector ûi,r,
corresponding to the highest singular value. The subsequent
estimation procedures vary based on the structure of Tr.

1) Correlation-based Angle Estimation: We start with the
highest resolution dimension to estimate the angles for each
detected path. The measurement vector for this spatial di-
mension is constructed and isolated from [Xi](j), and the
process iterates until all path angles are resolved. Without
losing generality, let r = 3 (corresponds to the x-axis of the

1For now, we assume all paths have distinct delays; the special case where
paths have identical delays is addressed in Section II-E.

BS antenna) denote the spatial dimension with the highest
resolution. The angle is then estimated by a one-dimensional
search as follows.

ω̂r
i = argmax

ω̃
∥ûH

i,rT
H
r aNr

(ω̃)∥. (18)

Subsequently, we decouple the contribution of ωr
i from Xi.

Which for r = 3, this can be done by the following operation
as Ai ×1 ũ†

i,r = ϵ3,i ×1 u4,i ×2 u1,i ×3 u2,i ×4 αi, where
ϵ3,i → 1 as ω̂r

i → ωr
i . Thus, we adjust the tensor Xi to

Xi ← Xi ×j ũ
†
i,r. This method is applied iteratively to each

dimension until all angles associated with a path are estimated.
2) ESPRIT-based Angle Estimation: In case Tr is a matrix

with orthogonal columns, i.e., TH
r Tr = IMr

, we implement
a gridless method based on ESPRIT. In element space, the
parameter ωr

i is estimated using the shift invariance property
of aNr

(·) [21]. In beamspace, this invariance is modified by
Tr and holds only if Tr maintains a compatible structural
invariance [22]. The lemma below formalizes this requirement.
Lemma 1. Consider a unitary matrix T̃r ∈ CNr×Mr

where the first and last rows share an identical column
span, J1T̃r = J2T̃rΓ, where J1 =

[
INr−1 0Nr

]
, J2 =[

0Nr INr−1

]
, and Γ ∈ CMr×Mr is nonsingular. Defining

T̃H
r = [̃t1, t̃2, . . . , t̃Nr

], if a matrix Φ ∈ CMr×Mr satisfies
Φt̃Nr

= 0 and ΦΓHt̃1 = 0, then
Φûr,i = ΦΓHûr,i exp(jω

r
i ). (19)

Proof. See [22].
The matrix Φ orthogonally projects vectors onto the null

space of tNr and ΓHt1. To compute Φ, construct P by
aligning these vectors as columns, then derive

Φ = IMr −P(PHP)−1PH. (20)
Using (19) and (20), an estimate for ωr

i is given by

ω̂r
i = arg

(
(ΦΓHûr,i)

†
Φûr,i

)
. (21)

E. Modification for Non-resolvable Paths in Delay Domain
The method’s effectiveness relies on resolving paths in

the delay domain, which generally provides the highest res-
olution. However, closely spaced paths in delay that are
separable in spatial domains remain undetected. Consider L̄
paths that share identical delay values, resulting in a single
delay estimate τ̂i. After delay mitigation, (17) modifies to
Ai = u3,i ×1 u4,i ×2 u1,i ×3 u2,i ×4 ᾱ, where ᾱ =[
αi,0 αi,1 . . . αi,L̄−1

]
. Instead of estimating the path

with the largest αi,l̄, the maximization in (18) is modified
to detect L̄ paths (i.e., ω̂r

i,l̄ for l̄ ∈ {0, 1, . . . , L̄ − 1}) by a
one-dimensional search over ∥ûH

i,rT
H
r aNr (ω̃)∥,2 followed by

a CA-CFAR detector with automatic threshold [18]. Further,
we construct Ūi,r =

[
ũi,0,r ũi,1,r . . . ũi,L̄,r

]
. Mirroring

Section III-C, the dimension r is decoupled as
Ai ×j Ū

†
i,r = Asub,i,0 ⊔ Asub,i,1 ⊔ · · · ⊔ Asub,i,L̄−1, (22)

where for r = 3, Asub,i,l̄ = ϵ3,i ×1 u4,i ×2 u1,i ×3 u2,i ×4

αi,l̄. Following Section III-D1 and (22), the input for the next
dimension is XiL̄+l̄ ← X

l̄,:,:,:
sub,i , where Xsub,i = Xi ×j Ū

†
i,r.

2Alternatively, the ESPRIT-type approach could be employed to estimate
these angles instead of searching for peaks. However, ESPRIT requires an
additional structural constraint and prior knowledge of the number of paths
in the spatial domain, which is why it was not adopted here.
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IV. RESULTS

A. Simulation Setup

We simulate a downlink scenario with one LoS and one
non-line-of-sight (NLoS) component, with angular frequencies

Ω =

[
ω0

ω1

]T
=

[
−1.08 −0.31 0.38 0.21 −0.20
−0.03 0.16 0.61 −0.46 −0.21

]T
.

where ranges are calculated as −397.61 × ω5
r =

[
80 85

]
meters. In default, the BS has NBS = N1 × N2 = 16 × 24
antennas, while the UE has NUE = N3×N4 = 4×16 antennas,
both spaced at half the wavelength λ/2. The system operates
at 27.2 GHz with a bandwidth of 3300×120 kHz. The OFDM
frame includes S = M1 ×M2 = 4 × 34 symbols per block
and M = M3 ×M4 = 4 × 8 symbols per user beam, and
pFA = 10−6. The noise PSD is −174 dBm/Hz, and the noise
figure is 10 dB. Experiments evaluate accuracy, resolution, and
complexity, comparing the proposed with SoTA estimators.

The proposed methods include FFT− CB (correlation-
based angle estimation), FFT− CB (Modified) (handling
non-resolvable paths), and FFT− ESPRIT (ESPRIT-
based angle estimation). Comparisons are made with
RDB− ESPRIT [4], SVD− CB [23], and the maximum
likelihood estimator (MLE). Unlike methods compared,
the proposed approaches do not require prior path count
knowledge. Moreover, FFT− CBs, SVD− CB, and MLE
utilize all 34 beams without precoder orthogonality, while
subspace methods use 24 orthogonal beams out of 34 beams.

B. Evaluation Metrics

The root mean squared error is not used as it lacks
auto-pairing information and does not account for missed
detections or false alarms. In our performance evalua-
tion, we use the generalized optimal sub-pattern assignment
(GOSPA) [24], with exponent value 1, cutt-off distance
2π/min ([N1, N2, N3, N4,K]), and the cardinality penalty 2.
To evaluate complexity, we measure computation time per
iteration on a system with a 13th Gen Core-i7 CPU and 32
GB RAM. The shown results are averages over 250 Monte
Carlo simulations per data point.

C. Simulation Scenarios

1) Accuracy: Fig. 1 compares the GOSPA across estima-
tors versus transmit power. The proposed FFT-based methods
achieve the SNR threshold at lower power than subspace
approaches due to inherent DFT gain. Accuracy improves
until 30 dBm for FFT-CB and FFT-CB (Modified), and 16
dBm for FFT-ESPRIT, but they approach a plateau because
the estimation based on DFT bin limits the delay accuracy.
Note FFT-ESPRIT is not as performant as it uses only
24 of 34 beams. The SVD-based method requires higher
power to reach its SNR threshold but continues to improve
with power (no plateau observed). RDB-ESPRIT performs
worst, as its tensor decomposition demands a high SNR per
beam/subcarrier to converge.

-5 0 5 10 15 20 25 30 35 40
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MLE (Known L)

Fig. 1. GOSPA of the selected estimators versus the transmitted power.
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Fig. 2. GOSPA of the estimators versus range difference between two paths.

2) Resolution: Fig. 2 shows each estimator’s ability to
separate two close-range paths with 45 dBm transmitted power
for the UE. The first path remains fixed at 80 m, while
the second moves closer from 83 m to 80 m. As expected,
SVD-CB, a super-resolution method, closely follows MLE.
The resolution of FFT-CB and FFT-ESPRIT is constrained
to approximately twice the DFT resolution, which is∼ 0.75 m.
This limitation occurs as the detector requires two consecutive
windows to extract peaks.

The proposed FFT-CB (Modified) mitigates this limit,
detecting both paths from 0 m to 0.5 m separation. However,
between 0.6 m and 1.4 m, it detects only one path. Fig. 3
clarifies this behavior with periodograms and beam-correlation
profiles. At 0.25 m separation, the periodogram shows a single
peak, yet FFT-CB (Modified) detects the secondary beam
correlation peak corresponding to the second path. At 0.75 m,
the second path is obscured by the sidelobe of the first, so
its peak is not detected. This occurs because the delay bin
under analysis is sufficiently distant from the true delay of the
second path, causing its energy to be filtered out during the
delay mitigation stage, leaving only a single detectable peak
in the AoD dimensions.

3) Complexity: Fig. 4 illustrates the computational over-
head as subcarriers increase. Although SVD-CB achieves high
accuracy, it exceeds 16 sec per iteration, making it suitable for
offline applications. The proposed FFT-based methods remain
under 1 sec, outperforming even RDB-ESPRIT, which is typ-
ically considered low-complexity. Among the FFT approaches,
FFT-ESPRIT is the fastest, due to its gridless estimation.

Fig. 5 breaks down computation time for each method.
For SVD-CB and RDB, the dominant costs, SVD and CP
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Fig. 3. Periodogram (top) and beam-correlation (bottom) profiles illustrating
how Modified FFT-CB resolves two close paths.
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Fig. 4. Computation time of each estimator versus the number of subcarriers.
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Fig. 5. Breakdown of computational time for each estimator at default settings.

decomposition, are already highly optimized in MATLAB. In
contrast, FLEX : FFT-CB is mainly affected by FFT (6), and
non-coherent combining (9). This suggests that selecting fewer
relevant columns instead of combining all could potentially
decrease complexity even further.

V. CONCLUSION

We proposed FLEX, a family of low-complexity FFT-based
beamspace channel estimators for mmWave MIMO-OFDM.
These methods estimate propagation delays via an FFT-based
periodogram with CA-CFAR detection, then eliminate delays
to decouple spatial dimensions. Angle estimation is performed
using CB or ESPRIT, with a modified CB method resolving
non-resolvable paths in the delay domain. Simulations show
that FLEX achieves competitive accuracy with SoTA methods
at significantly lower computational cost while automatically
pairing the parameters and estimating the number of paths.
Future extensions may consider robustness against array cal-
ibration errors, synchronization mismatches, and deviations
from ideal channel models.
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