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Abstract—This paper addresses the challenge of achieving
robust and reliable positioning of a radio device carried by an
agent, in scenarios where direct line-of-sight (LOS) radio links
are obstructed by the agent. We propose a Bayesian estimation
algorithm that integrates active measurements between the ra-
dio device and anchors with passive measurements in-between
anchors reflecting off the agent. A geometry-based scattering
measurement model is introduced for multi-sensor structures,
and multiple object-related measurements are incorporated to
formulate an extended object probabilistic data association (PDA)
algorithm, where the agent that blocks, scatters and attenuates
radio signals is modeled as an extended object (EO). The
proposed approach significantly improves the accuracy during
and after obstructed LOS conditions, outperforming the conven-
tional PDA (which is based on the point-target-assumption) and
methods relying solely on active measurements.

Index Terms—robust positioning, active and passive measure-
ments, extended object tracking, data association

I. INTRODUCTION

Localization and sensing have witnessed significant ad-
vancements in recent years. Integrating radar sensing with
radio localization enables simultaneous positioning and track-
ing, crucial for applications like autonomous driving, key-
less access system, and human activity recognition [1]–[3].
Additionally, multi-sensor frameworks enhance accuracy and
reliability by leveraging spatial diversity and sensor fusion in
dynamic environments [4], [5].

Extended object tracking (EOT) addresses scenarios where
objects, such as human bodies, generate multiple scattering
paths due to their physical extent. Unlike traditional point-
source models, EOT accounts for an object’s spatial di-
mensions, offering a more accurate representation. Previous
work includes modeling with ellipses, rectangles, star-convex
shapes, and random matrices, effectively capturing the spatial
distribution of scattering points, and utilizing probabilistic
frameworks for state estimation [6]–[8]. Probabilistic data
association (PDA) is a Bayesian approach used in target
tracking to address measurement origin uncertainty [9]. Con-
ventional PDA [9] uses the “point-target-assumption” that
disregards the extended nature of objects, leading to a model
mismatch in scenarios where multiple measurements arise
from spatially distributed scattering points [10], [11]. This
limitation necessitates incorporating multiple object-related
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Fig. 1. A radio device carried by a person, modeled as an extended object,
moves along a trajectory.

measurements into the data association process to enhance
localization performance. Furthermore, when a radio device
is carried by an agent (e.g. a person or a robot)1, line-of-sight
(LOS) radio links can be obstructed by the agent during certain
time, which significantly deteriorates the radio localization
performance.

This paper presents a radio localization approach for ex-
tended object tracking in obstructed line-of-sight (OLOS)
scenarios. We propose a Bayesian estimation algorithm which
fuses active measurements between a radio device and multiple
anchor nodes (fixed radio transceivers with known position) as
well as passive measurements in-between anchors reflected off
the EO as illustrated in Fig. 1. The algorithm estimates both the
radio device’s position and the object’s extent using position-
related information from LOS and scattering components.
An efficient geometry-based scattering model is proposed to
overcome the computational complexity of the ideal scattering
model, while still allowing to fuse the scattering information
from multiple anchors to jointly estimate the object’s extent.
Additionally, an extended object probabilistic data association
(EOPDA) algorithm addresses the limitation of the point
assumption PDA, improving positioning accuracy.

II. RADIO SIGNAL MODEL

At each time step n, a radio device at position mn trans-
mits a signal, and each anchor j ∈ {1, ..., J} at position
p
(j)
a = [p

(j)
ax p

(j)
ay ]T acts as a receiver, capturing active mea-

surements. Synchronously, pairs of anchors (j, j′) exchange
signals, capturing passive measurements from the EO. The
EO, centered at position pn, is rigidly coupled to the radio
device. The gap between the device and the EO’s center is

1In this paper, the agent that can block, scatter and attenuate radio signals
is referred to as extended object (EO).
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Fig. 2. Scattering models of the extended object for passive measurements.
(a) an ideal scattering model where scatterers are distributed within a sector on
the EO’s surface, (b) a simplified geometry-based scattering model exploiting
the geometric relation of scatterers and the EO.

described by the bias bn. An example is shown in Fig. 2a. We
assume scatterers are primarily distributed on the EO’s surface,
with the corresponding sector treated as a scattering volume
[12]. We denote the scattering volume for active and passive
measurements as Q(j)

A,n and Q(j,j′)
P,n for received anchor j at

time n. Each point-source scatterer is denoted by its position
q ∈ Q(j)

A,n and q′ ∈ Q(j,j′)
P,n , respectively [13].

A. Active Radio Signal

At each time n, a radio signal is transmitted from the radio
device and received at anchor j. The complex baseband signal
from anchor j is modeled as

r
(j)
A,n(t) = α(j)

n s(t− τ (j)n )

+
∑

q∈Q(j)
A,n

α(j)
q,ns(t− τ (j)q,n) + w(j)

n (t) (1)

where α(j)
n and τ (j)n are the complex amplitude and delay of

the LOS component from active measurements. The complex
amplitude and delay of the scatter component are denoted
as α

(j)
q,n and τ

(j)
q,n The second term w

(j)
n (t) accounts for

measurement noise modeled as additive white Gaussian noise
(AWGN) with double-sided power spectral density N0/2.

B. Passive Radio Signal

At each time step n, a radio signal is transmitted from
anchor j′ and received at anchor j. The complex baseband
signal from anchor j is modeled as

r
(j,j′)
P,n (t) =

∑
q′∈Q(j,j′)

P,n

α
(j,j′)
q′,n s(t− τ

(j,j′)
q′,n ) + w(j,j′)

n (t) (2)

where α(j,j′)
q′,n and τ (j,j

′)
q′,n are the complex amplitude and delay

of the scatter component from Q
(j,j′)
P,n .

C. Signal Parameter Estimation

Measurements which are extracted using a channel estima-
tion algorithm [14], [15] from active radio signals are called
active measurements zA,n, while measurements which are ex-
tracted from passive radio signals are called passive measure-
ments zP,n. We define the vectors zA,n = [z

(1)
A,n

T
· · · z(J)A,n

T
]T

and zP,n = [z
(1,1)
P,n

T
· · · z(J,J)P,n

T
]T for the measurement vectors

per time n. Take the passive case for example, we define
z
(j,j′)
P,n = [z

(j,j′)
P,n,1 , . . . , z

(j,j′)

P,n,M(j,j′)
P,n

] with M
(j,j′)
P,n being the

number of passive measurements. Each passive measurement
z
(j,j′)
P,n,l = [z

(j,j′)
P,d,n,l z

(j,j′)
P,u,n,l]

T, l ∈ {1, . . . M (j,j′)
P,n } contains a

distance measurement z(j,j
′)

P,d,n,l ∈ [0, dmax] and a normalized

amplitude measurement z(j,j
′)

P,u,n,l ∈ [γ,∞).

III. SYSTEM MODEL

In this section, we formulate a Bayesian method which fuses
multiple object-related measurements from both active and
passive measurement data. We jointly estimate the kinematic
states as well as the extent states of the EO to address the
extended object tracking problem.

At time n, the radio device and the extended object are
characterized by the kinematic state, bias state and extent
state. The kinematic state xn = [pT

n vT
n]T consists of the

position of the EO’s center pn = [pxn pyn]T and the velocity
vn = [vxn vyn]T. The bias describes the offset between the
EO center and the radio device, defined as bn = [bρn bφn]T,
where bρ is the distance between the EO center and the
radio device, and bφ is the orientation relative to the x-axis
of the EO coordinate system. A geometry-based scattering
model is proposed to approximate the extent of the EO, as
illustrated in Fig. 2b. The EO is approximated as a circle,
while the scattering volume is modeled as an ellipse, referred
to as scattering ellipse. The extent state Xn = [rn wn]T,
where rn denotes the circle’s radius, and wn represents the
semi-minor axis of the scattering ellipses for all anchors. For
simplicity, we define the augmented extended object state as
yn = [xT

n b
T
n X

T
n]T. The state estimate of yn is obtained by

calculating the minimum mean-square error (MMSE) estima-
tor ŷMMSE

n ,
∫
yn f(yn|zA,1:n, zP,1:n) dyn . The estimation

process involves marginalizing the joint posterior distribution,
as detailed in Sec.III-D.

A. LOS Measurement Model

The position of the radio device is given as

mn = pn +

[
bρn cos(bφn)
bρn sin(bφn)

]
. (3)

The likelihood function (LHF) of an LOS path is given by

fLOS(z
(j)
A,n,l|xn, bn) = fN(z

(j)
A,d,n,l;hLOS(mn,p

(j)
a ), σ2

d (z
(j)
A,u,n,l))

(4)
where fN(x;µ, σ2) is the Gaussian PDF, with mean
hLOS(mn,p

(j)
a ) = ‖mn − p

(j)
a ‖ being the LOS dis-

tance and variance σ2
d (z

(j)
A,u,n,l). The variance is deter-

mined from the Fisher information given by σ2
d (z

(j)
A,u,n,l) =

c2/(8π2 β2
bw (z

(j)
A,u,n,l)

2), where βbw is the root mean squared
bandwidth [16], [17], and (z

(j)
A,u,n,l)

2 corresponds to the SNR.

B. Scattering Measurement Model

The scattering LHF conditioned on xn and Xn is a convo-
lution of the noise distribution and the scattering distribution
[10]. The LHF of an individual scattering measurement is
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obtained by integrating out the scattering variables. For the
passive measurements z(j,j

′)
P,n,l it is given as

fP(z
(j,j′)
P,n,l |xn,Xn) =

∫
f(z

(j,j′)
P,n,l |xn, q

′)f(q′|Xn)dq′ (5)

The proposed geometry-based scattering model approxi-
mates the scattering distribution in (5) as follows. For each
received anchor j, the center χ(j)

n of the scattering ellipse is
represented as

χ(j)
n = pn +

[
rn cos(φ

(j)
n )

rn sin(φ
(j)
n )

]
(6)

where φ
(j)
n is the angle between the x-axis of the EO

coordinate system and the line from pn to p
(j)
a given as

φ
(j)
n = atan2(

pyn−p(j)ay

pxn−p(j)ax
). While the unified semi-minor axis wn

of all scattering ellipses (contained in Xn) is jointly estimated,
the semi-major axis l(j)n is determined by the opening angle
ω, symmetric to the line connecting pn to p(j)a (see Fig. 2b),
capturing scatterers from each anchor j. The orientation θ(j)n
of the scattering ellipse follows the circle’s tangent direction.
The measurement covariance can be represented as R(j)

n =

A
(j)
n E

(j)
n A

(j)
n

T
, while E(j)

n ∈ R2×2 is a symmetric, positive
semidefinite matrix that describes the 2-D scattering ellipse,
and A(j)

n is the rotation matrix related to θ
(j)
n . We denote

the larger eigenvalue of E(j)
n as e1 and the smaller ones as

e2. It is assumed that the square root of these eigenvalues is
proportional to the volume’s semi-axis [12]. This leads to

l(j)n = 2
√
e1 and wn = 2

√
e2 (7)

Take the passive case for example, the measurement co-
variance R(j)

n is used to decide the covariance matrix of a
Gaussian PDF 2 that models the scattering distribution due to
the geometric shape as f(ζ|R(j)

n ) , fN(ζ;0,R
(j)
n ). The LHF

of an individual scattering measurement is derived as
fP(geo)(z

(j,j′)
P,n,l |xn,Xn)

=

∫
f(z

(j,j′)
P,n,l |χ

(j)
n , ζ)f(ζ|R(j)

n )dζ

= fN(z
(j,j′)
P,d,n,l;hP(χ(j)

n ,p(j
′)

a ,p(j)a ), σ2
d (z

(j,j′)
P,u,n,l) + σ2

λ) (8)

where hP(χ
(j)
n ,p

(j′)
a ,p

(j)
a ) = ‖χ(j)

n − p(j
′)

a ‖+ ‖χ(j)
n − p(j)a ‖.

The unscented transformation (UT) [19] is applied to trans-
form the propagation uncertainty of the scattering distribu-
tion f(ζ|R(j)

n ) from position domain to delay domain. The
variance σ2

λ represents the dispersion of the sigma points
transformed through the nonlinear function hP(·).

C. Data Association Uncertainty

For each anchor j, the measurements z(j)A,n and z(j,j
′)

P,n are
subject to data association uncertainty. Specifically, it is un-
known whether a given measurement corresponds to the LOS
path, the extended object, or is a result of clutter. To address
this uncertainty, the association variables a(j)A,n,l ∈ {0, 1} and

2It is shown in [18] that for an elliptically shaped object the uniform
distribution can be approximated by a Gaussian distribution.
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Fig. 3. Factor graph representing the factorization of the joint posterior PDF
in (10) and the messages according to the SPA. The following short notations
are used: MA , M

(j)
A,n, MP , M

(j)
P,n, aA,l , a

(j)
A,n,l, aP,l , a

(j,j′)
P,n,l , gA,l ,

g
(j)
A,n,l, gP,l , g

(j,j′)
P,n,l , ξA,l , ξ

(j)
A,n,l, ξP,l , ξ

(j,j′)
P,n,l .

a
(j,j′)
P,n,l ∈ {0, 1} are introduced, where a value of 1 indicates

that a measurement is LOS or object-related, while a value of 0
indicates otherwise. Object-related and clutter measurements
follow Poisson distribution with means µm and µc. Clutter
measurements are independent and uniformly distributed ac-
cording to fc(z

(j)
A,n,l) and fc(z

(j,j′)
P,n,l ).

D. Joint Posterior PDF
It is assumed that the state yn evolves over time n as an

independent first-order Markov process. Therefore, the joint
state transition probability density function (PDF) can be
represented as

f(yn|yn−1) = f(xn|xn−1)f(bn|bn−1)f(Xn|Xn−1) (9)

where f(xn|xn−1), f(bn|bn−1) and f(Xn|Xn−1) are the
state transition PDFs of the agent motion, bias and the extent
parameters.

We assume that the measurements z(j)A,n and z
(j,j′)
P,n are

observed and thus fixed. According to the Bayes’s rule and
the related independence assumptions, the joint posterior PDF
of all estimated states for time n and all J anchors can be
derived as
f(y0:n,aA,1:n,aP,1:n|zA,1:n, zP,1:n)

∝ f(y0)

n∏
n′=1

Υ(yn′ |yn′−1)×
J∏
j=1

M
(j)

A,n′∏
l=1

gA(z
(j)
A,n′,l|yn′ , a

(j)
A,n′,l)

×
J∏

j′=1

M
(j,j′)
P,n′∏
l=1

gP(z
(j,j′)
P,n′,l|yn′ , a

(j,j′)
P,n′,l) (10)

where Υ(yn|yn−1) , f(yn|yn−1). Fig. 3 is the factor graph
that represents the factorization of (10). The pseudo-likelihood
function for the passive case is represented as

gP(z
(j,j′)
P,n,l |yn, a

(j,j′)
P,n,l ) =


µmfP(z

(j,j′)
P,n,l |xn,Xn)

µcfc(z
(j,j′)
P,n,l )

, a
(j,j′)
P,n,l = 1

1, a
(j,j′)
P,n,l = 0

(11)
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To estimate the states, marginalization of the joint posterior is
performed by message passing on the factor graph in Fig. 3
using the sum-product algorithm (SPA) [20] and a particle-
based implementation similar to [5].

IV. IDEAL SCATTERING MODEL

For comparison, we also approximate the scattering distri-
bution (5) based on the ideal scattering model in Fig. 2a,
where the EO is represented as an ellipse with scatterers
distributed within a sector on its surface. The extent state
X̃n = [an bn wn]T, where an, bn denote the semi-major
axis and the semi-minor axis of the EO, respectively, and
wn represents the width of the sector. The scattering LHF
is approximated by a Monte Carlo technique sampling within
the sector to evaluate the integral
fP(idl)(z

(j,j′)
P,n,l |xn, X̃n) (12)

≈ 1

I ′

I′∑
i=1

fN(z
(j,j′)
P,d,n,l; h̄P(xn, q

′
i,p

(j′)
a ,p(j)a ), σ2

d (z
(j,j′)
P,u,n,l))

where h̄P(xn, q
′
i,p

(j′)
a ,p

(j)
a ) = ‖(pn + q′i)− p

(j′)
a ‖+ ‖(pn +

q′i)− p
(j)
a ‖, q′i is the random sample generated in the sector,

and I ′ is the number of the samples used per received anchor.

V. RESULTS

A. Simulation Setup

The proposed algorithm is evaluated using synthetic data by
simulating the delay and amplitude measurements according
to the scenario presented in Fig. 4. The EO moves along a
smooth trajectory featuring two direction changes. A radio
device is rigidly coupled to the EO with bρ = 0.32 m and
bφ = −π/3. The generative model follows the ideal scattering
model with X̃ , where a = 0.3 m, b = 0.2 m, and w = 0.1 m.
The opening angle is set to ω = 2π/3. The mean number of
scattering measurements and clutter are µm = 5 and µc = 5,
respectively. The normalized amplitudes are set to 30 dB
at a 1 m LOS distance and follow free-space pathloss. The
object is observed at 180 discrete time steps at a constant
observation rate of ∆T = 100 ms. Active measurements are
entirely missed for anchors [A1, A2, A3] during time steps
[31, 60] and [111, 130], for [A1, A2] during [61, 80], and for
[A2] during [81, 110], while passive paths from all anchors
remain available throughout the trajectory.

The state transition PDF of the kinematic state f(xn|xn−1)
is described by a linear, constant velocity and stochastic accel-
eration model [21, p. 273], given as xn = Axn−1 +Bwn.
The acceleration process wn is i.i.d. across n, zero mean,
and Gaussian with covariance matrix σ2

a I2, with σa being
the acceleration standard deviation, and A ∈ R4x4 and
B ∈ R4x2 are defined according to [21, p. 273]. Furthermore,
the state transition PDF of the bias state is factorized as
f(bn|bn−1) = f(bρn|bρn−1)f(bφn|bφn−1). The PDFs of bρn
and bφn are bρn = bρn−1 + ερn and bφn = bφn−1 + εφn,
respectively. For the geometry-based scattering model, the
state transition PDF of the extent state is factorized as
f(Xn|Xn−1) = f(rn|rn−1)f(wn|wn−1). The PDFs of rn
and wn are rn = rn−1 + εrn and wn = wn−1 + εwn,
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Fig. 4. Graphical representation of the synthetic trajectory and one realization
of AP-EOPDA(geo) method. The scatters are generated with respect to one
received anchor at position (4, 4.5) for each time.

respectively. While the noise ερn, εφn, εrn and εwn are i.i.d.
across n, zeros mean, Gaussian, with variances σ2

ερ , σ2
εφ

,
σ2
εr and σ2

εw , respectively. The number of particles is set to
I = 5000 for inference during the track, and the particles
consist of all considered random variables. The state-transition
variances are set as σa = 2 m/s2, σερ = 0.1 m, σεφ = 0.5 rad,
σεr = 0.05 m, and σεw = 0.05 m.

B. Performance Evaluation

To evaluate the proposed algorithm, we compare the PDA
method under the point assumption, denoted as AP-PDA,
with the PDA designed for the extended object, denoted as
AP-EOPDA, and a method excluding passive measurements,
denoted as A-EOPDA. Additionally, we contrast the pro-
posed geometry-based scattering model with the ideal scat-
tering model under the AP-EOPDA method, denoted as AP-
EOPDA(geo) and AP-EOPDA(idl) with I ′ = 50 according to
Sec. IV. The posterior Cramér-Rao lower bound (P-CRLB) is
provided as a performance baseline considering the dynamic
model of the EO state [22]. The P-CRLB* assumes continuous
LOS availability to all anchors throughout the trajectory,
while the P-CRLB varies based on LOS blockages along the
trajectory.

Fig. 5 provides the results of a numerical simulation with
100 runs. The root mean squared error (RMSE) of the es-
timated device’s position is given by Fig. 5a and calculated
by eRMSE

n =
√

E{‖m̂MMSE
n −mn‖2}. Fig. 5b provides the

cumulative probability of the position errors ‖m̂MMSE
n −mn‖

evaluated over the whole track. Comparing A-EOPDA with
AP-EOPDA, we find that the RMSE of the joint estimation
(active & passive) significantly outperforms that of the active-
only estimation, particularly during and after the OLOS time
steps. AP-EOPDA(idl) precisely attains the P-CRLB before
the OLOS situation and converges back to the P-CRLB
afterward. In comparison, AP-EOPDA(geo) achieves a similar
performance while requiring only half the execution time of
the AP-EOPDA(idl) method, as shown in Table I. In contrast,
AP-PDA diverges significantly to an incorrect position due to

928



1 50 100 150 180
10−2

10−1

100

101

time n

e
R

M
SE

n
in

m
P-CRLB P-CRLB* AP-EOPDA(idl)
AP-PDA A-EOPDA AP-EOPDA(geo)

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

‖m̂MMSE
n −mn‖ in m

ca
m

m
ul

at
iv

e
pr

ob
ab

ili
ty

(b)
Fig. 5. Performance of different methods in synthetic measurements described
in Fig. 4, (a) is the RMSE of the estimated agent position, and (b) is
the cumulative distribution of the RMSE based on numerical simulations.
Different shades of grey represent different numbers of blocked anchors
described in Sec. V-A.

the inadequacy of the single-point assumption for extended
object tracking.

TABLE I
COMPARISON OF RUNNING TIME AND AVERAGED RMSE VALUES OF

DIFFERENT METHODS IN INVESTIGATED SCENARIOS.

Models avg. RMSE (m) running time per step (s)

AP-EOPDA(geo) 0.18 0.33
AP-EOPDA(idl) 0.16 0.67

VI. CONCLUSION AND FUTURE WORK

This paper addresses the challenge of achieving robust
positioning of a radio device attached with an EO when the
LOS between the device and anchors is obstructed by the EO.
We propose a joint estimation method that fuses both active
and passive measurements from multiple anchors, introducing
the probabilistic data association for extended object tracking.
Results show that our proposed method significantly reduces
the RMSE during and after the obstructed LOS, compared
to methods using only active measurements or the point-
assumption PDA. The passive measurements provide useful
information for estimation, improving positioning accuracy
during the full LOS blockage and minimizing outliers after the
obstruction. Additionally, the geometry-based extended object
model offers substantial computational efficiency, reducing the
processing time by 50 % compared to the ideal scattering
model, which is advantageous with an increasing anchor
number. Future research will focus on validating the algorithm
with real measurement data.
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