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Abstract—THz communications offer ultra-high data rates
and low latency, making them well-suited to meet the emerging
Industrial Internet of Things (IIoT) applications, but suffer from
blockage events. A promising solution is the deployment of Recon-
figurable Intelligent Surfaces (RISs), albeit at the cost of complex
management and configuration. To address this challenge, this
paper proposes an algorithm that proactively configures the
network (i.e., Base Station (BS) and RISs) based on sensing
data obtained from a MIMO radar co-located with the BS.
Network-level simulations in a dynamic industrial environment
demonstrate the effectiveness of our approach compared to an
ideal oracle with perfect localization.

Index Terms—Terahertz (THz), Reconfigurable Intelligent Sur-
faces (RISs), Frequency-Modulated Continuous Wave (FMCW),
Radar, Localization, Predictive Network Management.

I. INTRODUCTION

The fourth industrial revolution, also known as Industry
4.0, is enriching the manufacturing world through Information
and Communications Technologies (ICT). In particular, the
Industrial Internet-of-Things (IIoT) is one of the key enablers
of the Industry 4.0 paradigm, as it connects a vast network of
sensors, actuators, and autonomous systems to enhance the ef-
ficiency, automation, and performance of industrial processes.
This paradigm also unleashes the rise of innovative real-time
services, such as Extended Reality (XR)-based maintenance,
remote monitoring, and digital twins, which enable real-time
simulation and optimization of industrial processes [1].

The stringent requirements of these next-generation use
cases [2] make TeraHertz (THz) wireless systems particularly
attractive, as THz communications, operating in the 0.1-10
THz frequency range, promise to enable ultra-high data rates
while supporting low-latency and high-capacity connectiv-
ity. However, despite their potential, THz signals face three
major challenges: (i) their short wavelengths lead to com-
plete signal blockage by obstacles, making Non-Line-of-Sight
(NLoS) communication unfeasible; (ii) high frequencies result
in severe path loss and atmospheric absorption, significantly
limiting coverage; and (iii) the need for highly directional
antennas to mitigate propagation loss increases the risk of
beam misalignment, degrading overall performance [3].

A promising approach to mitigating NLoS limitations in
THz-based IIoT systems is the deployment of Reconfigurable
Intelligent Surfaces (RISs). These devices consist of digitally
reconfigurable elements capable of reflecting the incident wave
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in the desired direction, varying the characteristics of the
impinging waves [4]. They can be installed on walls and pro-
vide a low-cost solution to bypass possible obstacles, creating
alternative links between communicating devices. However,
the adoption of RIS technology presents significant challenges,
particularly in their real-time configuration and management.

For example, in [5], the authors try to enhance the narrow-
beam scanning procedure by using larger beams for initial
alignment and iteratively searching for the optimal RIS con-
figuration. However, this approach is impractical in dynamic
scenarios due to latency constraints. Other works, such as [6]
and [7], address IloT-specific challenges, like coverage en-
hancement and device-RIS association, proposing joint device-
RIS association algorithms to optimize configurations under
both perfect and imperfect Channel State Information (CSI).
However, these solutions rely on theoretical analyses without
accounting for real-world complexities. The survey [7] reviews
various beam tracking and channel estimation methods for
RIS-based THz systems, including iterative algorithms and
machine learning approaches. It also highlights the potential
of sensing and localization at THz frequencies for millimetric
precision, but notes that this remains a significant challenge
due to the large number of antenna elements required. In [8], a
tutorial on integrating radiofrequency sensing and localization
with RIS is presented, but it focuses solely on static scenarios,
emphasizing the need for advanced techniques in dynamic
environments.

Hence, to the best of the authors’ knowledge, no existing
work leverages localization to optimize beam management and
RIS configuration in dynamic environments. In addition, in
IIoT scenarios, communication outages due to delayed block-
age detection can be intolerable. The duration of communica-
tion outages can be reduced by increasing the localization rate,
but this is not always feasible. To fill this gap, this paper pro-
poses a novel approach that exploits radar-based localization
data to predict the blockage event, which corresponds to NLoS
condition, before it occurs and proactively configure both the
BS and the RISs, ensuring reliable communication links at
THz frequencies despite blockages caused by moving objects.
We validate our solution through network-level simulations of
uplink data communications between User Equipments (UEs)
and the BS in a dynamic industrial scenario.
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Fig. 1: The considered industrial scenario.

II. SCENARIO

Although the proposed approach is general, for the sake of
explanation and performance assessment, we refer to a specific
industrial scenario. It consists of a 2D industrial environment
measuring 9m x 13m, whose layout is depicted on the left-
hand side of Fig. 1. We assume that broadband cellular
connectivity is provided in this area by a Base Station (BS)
operating at 300 GHz, serving two stationary User Equipments
(UEs), namely UEO and UEL. These devices may represent,
for instance, sensing units collecting data to be forwarded to
a control center monitoring ongoing industrial processes.

Two moving machines (e.g., pallet conveyors) are also
considered, represented by dark grey boxes in Fig. 1. These
machines follow a straight trajectory from the top to the
bottom of the light grey area highlighted in the same figure,
referred to as the machine zone, which measures 3m x 5Sm.
With this setup, UEO always maintains a Line-of-Sight (LoS)
connection with the BS, whereas UEI initially has a LoS link
but later experiences blockages due to the movement of the
machines.

To avoid connectivity failures, two RISs are strategically
positioned to maintain LoS links with the BS at all times, while
also providing LoS coverage to areas that may be shadowed
by the moving machinery, ensuring continuous connectivity
between the BS and UE1 when the direct link is unavailable.

Fig. 1 also highlights, using distinct colors, the area where
a LoS link can always be established between the BS and the
UEs, as well as the area where this condition might be lost,
potentially requiring the activation of the most suitable RIS
among the two positioned in the top-right and bottom-right
corners.

III. RADAR-BASED LOCALIZATION AT THZ FREQUENCIES

To acquire information on the industrial environment,
the BS employs a Frequency-Modulated Continuous-Wave
(FMCW) radar with a single transmit antenna and M, re-
ceive antennas, operating at a carrier frequency f.. The radar
periodically transmits a burst of chirp signals to sense the
surrounding environment. The received signal is mixed with
the transmitted signal to produce an Intermediate Frequency
(IF) signal containing frequency and phase differences. The

data cube X € CS*MrxN 5 a three-dimensional tensor
representing raw radar data: S is the number of samples per
chirp, M, is the number of receive antennas, and N is the
number of chirps per frame. It is obtained by sampling the IF
signal at rate f, with an analog-to-digital converter to get S
samples per chirp.

From the raw radar data X € CS*MxN 3 Fast Fourier
Transform (FFT) is performed across all dimensions of X.
The FFT along the first dimension (fast-time) transforms the IF
signal into the frequency domain, yielding the beat frequency
fo = wpr, where p = B/T. is the chirp slope, B is the
bandwidth, T, is the chirp duration, and 7 = 2r/c is the
round-trip delay for a target at range r, with ¢ being the
speed of light. The range is then computed as r = cfy,/(2u).
Next, an FFT across the chirp dimension (slow-time) resolves
the Doppler shift f;, enabling radial velocity calculation via
v =cfq/(2f.), where f. is the carrier frequency. Finally, an
FFT across the antenna dimension extracts phase differences,
providing azimuth angular information. Then, range-Doppler
and range-azimuth maps can be constructed for target local-
ization.

A distance-dependent threshold is applied to the radar maps
to produce a detection point cloud. This is achieved using an
exponential decay threshold defined as v = ~pe™*", where
7o is the initial threshold value, r is the target range, and
« is a tunable parameter to adjust the threshold’s sensitivity
to distance. Range-azimuth and range-Doppler point clouds
are merged based on common range, ensuring target distinc-
tion when they are close in angle but differ in velocity, or
vice versa. We employ Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) [9] to cluster targets by
density. DBSCAN uses two main parameters: epsilon and
min_pts. Min_pts sets the minimum number of detected points
to declare a valid cluster.

A Kalman filter is applied to track the positions of detected
targets over time. The Kalman filter, implemented with a state
vector [z,Y, v, vy|T, initialized with positions from the first
radar frame and velocities derived from positional differences.
The state transition matrix F' incorporates a finer time step
than the radar update rate. By denoting I,, as a n X n identity
matrix, the measurement matrix H observes the position, with
process noise covariance () = 0,14 and measurement noise
covariance R = 0,1, where o, and o, are tuned parame-
ters. The filter predicts positions at each fine step, updating
every radar measurement with radar centroids. The resulting
fine-grained data include positions, velocities, and sizes for
each detected target. Additionally, a LoS blockage check is
conducted at each step, leveraging bounding box vertices of
detected machines to evaluate obstructions between the BS
and each UE, updating the blockage condition accordingly.

IV. RIS-BASED COMMUNICATION AT THZ FREQUENCIES

In this section, we describe how we model the radio
channel between K single-antenna UEs, M RISs comprising
Nm = Npx X Ny elements, and a BS equipped with an
antenna array of V; elements.
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Fig. 2: Representation of the UE-RIS-BS link in case of a
blockage event.

UE-BS radio channel modeling: The channel vector
hy € CV*! for the k-th UE-BS link considers free space
propagation between each transmitting and receiving antenna
element. This assumption is justified for THz communications,
where highly selective beamforming in LoS conditions makes
the free-space model a valid approximation. The generic
element of the channel vector is thus defined as:

hk,n =V Gan
47Tdk’n

with hy, representing the channel coefficient between the k-
th UE and the n-th BS antenna element, dy, denoting the
Euclidean distance, A is the wavelength, Gy and G, are the
gain of the elements of the UE and BS, respectively. In our
channel model, if the direct path is obstructed, the signal is
assumed to be completely lost, resulting in a null hy.

UE-RIS-BS radio channel modeling: The channel vector
hy that characterizes the UE-RIS-BS link for the k-th UE and
the m-th RIS (m € {1,..., M}) is expressed as follows:

hk = Hbs,m ‘I’mhm,ka (2)

2r
e—JTdk.n7 (1)

where hy, € CV»*1 is the channel vector between the k-th
UE and the m-th RIS, Hyg;, € CV*Nn i the channel matrix
between the BS and the RIS, while ¥,, € CV¥»*Nn denotes
the scattering matrix of the m-th RIS. Specifically, we model
the RISs with a single connected architecture, which means
that ¥, can be written as:

U, = diag(e—WJm,l , e—ﬁ/lm,z’ - e—.i’l/lm,z\zm)7 (3)

A

where ¥y = (¢1,%9,...,%n,) is the vector of the phase
shifts. Each RIS is assigned with a codebook of vectors
Ym(Oine, Orer), Where the incident angle is O = (bine, Pinc)
and the reflective angle is Oref = (Orer, Pref)'. Assuming a fixed
Oy for the RIS-BS link and dividing both the elevation and
azimuth planes into 90 discrete angles, a codebook of 90x90
phase shift vectors can be computed [10] for each possible

! Assuming the conventional spherical coordinate system, the azimuth and
elevation angles are defined as: ¢ € [0,27) and 6 € [0, 7), respectively.

Ojne in the UE-RIS link. We say that the RIS is activated
when one of the possible v, is chosen.

Based on the relative positions of UEs, RISs, obstacles, and
the BS, the radio channel vector hy, which models the direct
or indirect link between the k-th UE and the BS, falls into
three cases: (i) a direct UE-BS path exists, and each element
of hy follows (1); (ii) due to obstructions, only an indirect
UE-RIS-BS path is available if the RIS is properly configured
(as illustrated in Fig. 2), in which case hy follows (2); (iii)
both direct and indirect paths coexist, resulting in an overall
channel vector given by the sum of the respective components.

Given hy, it is possible to compute the signal-to-
interference-plus-noise ratio (SINR) for each k € {1, ..., K},
where we assume the Maximum Ratio Combining (MRC)
technique at the receiver. In particular, the expression of SINRy
is as follows:

[y > B
SINRx = ———— 4
k 0_‘% ¥ T ) ( )
where the numerator represents the useful received power from
the k-th UE that transmits with power F, avzv is the thermal
noise power, and the interference power [ is given by

K
=3
i£k

where P is the transmit power of the i-th interfering UEs,
|hy|| denotes the norm of the channel vector hy, while |-|?
represents the square modulus; under the assumption that both
noise and interference follow a Gaussian distribution.

Figure 3 illustrates an example of the uplink SINR spatial
distribution for a single UE-RIS-BS link within the considered
scenario (see Sec. II) with parameters listed in Table I. The
results show that, with an appropriate configuration of ¥, the
coverage can be significantly extended behind the machine
zone, achieving an SINR range of 8-15 dB within a 3m?
region in proximity to the RIS.
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V. PROPOSED APPROACH

In this section, we present the proposed algorithm for
predictive network management at THz frequencies, where
both the BS and RISs are proactively configured based on
localization information provided by the radar mounted on
the BS. Specifically, with a periodicity of 7, the radar pro-
vides estimates of the coordinates and dimensions of detected
targets, which are subsequently classified as either machines
or UEs based on their respective sizes: if the largest dimension
is less than 1 m, the target is classified as a UE; otherwise,
it is identified as a machine. Using this estimated scenario
information, the MRC precoding vector at the BS for a k-th
UE can be computed as

hy!
Vi = T——
(BN

with hy given by (2) by assuming perfect CSI estimation.
Additionally, based on the estimated positions of the targets,

(6)
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Fig. 3: Exemplary SINR distribution for the UE-RIS-BS links,
when considering the upper RIS.

we leverage a predictive algorithm to forecast the occurrence
of potential blockages, i.e., to estimate whether an obstruction
will occur between the BS and any UEs within two radar
updates. Specifically, each Kalman filter (see Sec. III) up-
dates the state at each radar update, while in between two
measurements, it predicts the state using a constant velocity
model. Then, a linear interpolator considers the past five time
instances to predict the machine’s position at the next step,
enabling the verification of potential blockages. Then, based
on the current and predicted positions, the possibility of block-
age events is assessed for each UE-machine pair. If a blockage
is predicted, the network proactively activates the appropriate
RIS? by selecting the proper phase shift vector ¥, (Oinc, Oref)s
to ensure stable communication for UEs that are expected
to be obstructed before the next radar measurement. Since
we consider only two RISs and assume that each RIS can
serve at most one UE at a time, we adopt a greedy approach,
prioritizing the UEs closest to the RISs. Similarly, the BS’s
multiple antenna is configured to direct its beam toward the
newly activated RIS.

Based on this proactive configuration of both the BS and
RISs, UEs perform uplink transmissions to the BS following
an Unslotted Aloha Medium Access Control (MAC) layer
protocol accounting for the propagation delay. In fact, at THz
frequencies the propagation delay is typically in the same order
of magnitude as the transmission time thus making useless any
MAC relying on carrier sensing.

In particular, the MAC layer protocol works as follows.
Whenever an UE has new DATA to be transmitted, it initiates
a Back-Off (BO) phase for T5 = Tpo &, where Tpo is the
minimum BO duration; ¢ is a uniform random number in the
range [1;2°C], with C being an integer defining the duration
of the contention window and ¢ being an integer counting the
number of transmission attempts (starting at O for the first
attempt). At the end of the BO period, the UE sends the DATA

2We assume ideal, instantaneous BS-RIS communication and a network
with a-priori knowledge of RIS coordinates.

and enters reception mode for a maximum period, T\warT-
Specifically, we set Twarr = Tack + 27p,,.,» since it is the
time needed to receive the corresponding Acknowledgment
(ACK), where Thck = %, Pa is the number of bits
forming an ACK, Ry, = Blog,(M) is the bit rate (where
we assume that the symbol rate equals the bandwidth), M
is the modulation order considering an M-QAM modulation
scheme, and 7, is the maximum possible propagation delay
in the considered IIoT scenario. If an ACK is received during
Twair, the UE goes back to BO, as we consider the worst-
case condition where all UEs have always a new DATA to be
transmitted. Conversely, if no ACK is received during TyarT,
the UE retries the transmission up to a maximum number of
attempts, R.

The successful reception of a DATA or ACK transmission
depends on the radio channel quality. For the k-th link, this
quality is measured in terms of SINRj, which is computed
as in (4), based on the proactive configuration of the BS
and RISs, updated every 7 seconds. In this way, given a
specific error correction code and coding rate R., SINRy is
mapped to a packet error probability P,>. A transmission
is thereby considered successfully received if a randomly
generated number between 0 and 1 exceeds P, ; otherwise,
it is deemed lost.

Finally, to evaluate the overall network performance of our
solution, we use the network throughput, defined as:

8PNgr
Ts '
where P is the number of bytes forming the DATA, Ny is the

number of DATA successfully received at the BS within the
simulation time 7.

S = 7)

VI. NUMERICAL RESULTS

The proposed approach has been implemented in a custom
MATLAB-Python simulator. While results refer to the scenario
in Sec. II, the simulator and underlying model are scalable to
more complex configurations with additional UEs, RISs, and
dynamic machines. Simulation parameters, if not otherwise
specified, are listed in Table 1. Notably, to manage the huge
number of RIS elements required to provide a reasonable
link budget in NLoS condition, the simulator uses the large
RIS approximation from [11], which significantly lowers
the computational complexity when deriving the UE-RIS-BS
channel. Additionally, each RIS element is modeled like a
patch antenna, as detailed in [10].

To evaluate the overall effectiveness of our proposal, Fig. 4
depicts the network throughput as a function of the radar
update interval within a simulation time of 7g = 1 ms.
We compare our radar-based approach, applied using two
configurations of receive antenna elements at the radar, namely
M, = 32 and M, = 128, against an oracle-based approach that
has perfect and continuous knowledge of obstacles and UEs
positions. The performance of the latter, introduced here as a

3For simplicity, we assume that each transmission consists of a single
codeword.
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TABLE I: Simulation parameters.

Parameter Symbol Value
Carrier frequency fe 300 GHz
Bandwidth B 3 GHz
BS antenna element gain Gh 0 dB
BS noise figure Np 8 dB
BS antenna elements Ny 256256
UE antenna element gain G 0 dB
Transmit Power P 0 dBm
RIS antenna elements Niis 128 x 128
Modulation order M 4
Coding Rate (BCH code) R 0.9
DATA size P 20 B
Minimum Back-Off time T80 13.3 ns
Simulation time Ts 1 ms
ACK size Pa 10 B
Maximum propagation delay Thmax 72.7 ns
Contention window C 5
Maximum retransmission R 3
attempts

benchmark, has been evaluated with and without the presence
of RISs in the scenario.

As expected, network throughput increases with more fre-
quent radar updates, as this enhances the accuracy of proactive
RISs activation, thereby reducing losses during obstruction
events. Additionally, the performance deteriorates significantly
when the radar has an insufficient number of receiving anten-
nas due to inaccurate position estimation (see the curves for
M, = 32 and M; = 128). Indeed, the performance of our
approach matches that of the oracle without RISs only by
setting M, = 128. With a single radar update, 7 = 1 ms,
the network acquires the estimated map only at the start of
the simulation, preventing timely RISs activation and thereby
resulting in performance far below that of the oracle with RISs.
Conversely, with five and ten radar updates, i.e., 7 = 200
and 7 = 100 us, respectively, our solution is able to closely
approximate the ideal oracle, even when the oracle employs
RISs as soon as needed.

VII. CONCLUSION

This paper has proposed an algorithm that dynamically and
proactively configures a THz network (i.e., BS and RISs)
based on centimeter-level sensing data obtained from a multi-
antenna radar co-located with the BS. The proposed solution
is validated through network-level simulations of uplink data
traffic in a realistic, dynamic industrial environment and
compared against an ideal oracle with perfect, continuous
environmental knowledge. Numerical results show that our
approach can closely match the oracle’s network throughput
when the radar has at least 128 receive antennas and generates
radio maps with a periodicity of at most 100 ps.
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