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Abstract—The millimeter-wave (mmWave) technology offers
unprecedented potential to meet the growing demand for high-
speed data communications. However, it is also highly sensitive to
radio obstructions, which can significantly degrade the quality of
service and require frequent handover operations. Anticipating
such blockages through environment sensing is therefore critical
for efficient radio resource management and improved network
performance. In this context, this paper proposes an opportunis-
tic and cooperative sensing approach based on spatially dis-
tributed dual-beam reflective Reconfigurable Intelligent Surfaces
(RISs). These surfaces scan the environment and reflect toward
sensing nodes the ambient signal power from a plurality of non-
coherent sources. By analyzing the power fluctuations eventually
caused by transient shadowing, the presence of a mobile blocker
is first detected in angular sectors centered around the RISs. This
information can then be shared and fused to position the blocker
in 2D. As passive surfaces can suffer from significant power
losses and irregular beam patterns leading respectively to false
alarms and missed detections, we thus consider selecting and/or
weighting the RIS-wise detection observations that feed the final
cooperative positioning stage, relying on empirical reliability
indicators inspired by image processing. Simulation results in a
dense mmWave scenario illustrate benefits from selective multi-
RIS cooperation.

Index Terms—Radio blockage prediction, Passive mobile obsta-
cles, mmWave communications, Network densification, 6G net-
works, Integrated sensing and communications, Reconfigurable
intelligent surfaces, Cooperative positioning.

I. INTRODUCTION

Over the past decade, the millimeter-wave (mmWave) tech-
nology, leveraging abundant spectrum between 28-300 GHz,
has emerged as a key solution for high-speed, ultra-low latency
data transmission. However, radio links are more prone to
interruptions when operating at high frequency. The overall
network performance is thus degraded due to a reduced quality
of service (QoS) experienced by user equipments (UEs), which
must trigger frequent handover procedures [1]. Anticipating
link blockages through large-scale in-band environment sens-
ing is hence of paramount importance to develop efficient
radio resource management and handover mechanisms. In
this context, the emerging paradigm of integrated sensing
and communication (ISAC) has recently gained significant
attention, particularly for future 6G networks.

State-of-the-art approaches consider relatively “late” detec-
tion mechanisms, relying on adjacent guard beams alongside
the main BS-UE communication beam [2] or on empirical
statistics of the direct path received power [3]. In [4], another
in-band detection method inspired by device-free localization
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techniques [5] leverages the transient power shadowing in-
duced by a mobile blocker. Specifically, it tracks temporal
fluctuations in ambient interference power from nearby trans-
mitters via side-lobes. A sensing matrix formed from measured
signal-to-sector interference-plus-noise ratio is processed via a
source separation method (e.g., Singular Value Decomposition
(SVD)) to recover the mobile blocker’s space-time power
profile and its angular sector occupancy. The previous ap-
proach has been extended in [6], where the blocker’s position
is estimated as the intersection of angular sectors detected
from multiple nodes via cooperative sensing using a least
squares (LS) approach [7]. In [2], [4], [3], [6] the sensing
field of view is geographically restricted to the immediate
vicinity of a pre-existing communication link. Moreover, these
solutions require a minimal network deployment of active
communicating nodes. Finally, sensing nodes with dedicated
hardware must be deployed (e.g., sectored antenna systems [4],
[6] or multibeam capabilities including guard beams [2]). Even
more specific solutions require a side radio technology [8]
or the preliminary in-site learning of the radio environment,
adding a critical offline calibration phase (e.g., [9], [10]).

In this paper, we consider a plurality of spatially dis-
tributed dual-beam reflective Reconfigurable Intelligent Sur-
faces (RISs), which can be for instance implemented with
interconnected uniform phased arrays or transmit-arrays [11],
or even with surface-wave metaprisms [12]. Each of these
surfaces, which is associated with a standard communicating
node (serving also as collecting sensing node), is endowed
with at least one programmable "input" beam. The latter
scans angular regions of space, therefrom, reflecting towards
the sensing node the ambient signal power integrated from
non-coherent sources residing in these angular regions. This
approach aims at relaxing the constraints in terms of both
hardware requirements and scanning protocol in compari-
son with [4], while still benefiting from spatial diversity
and information redundancy thanks to multi-point sensing
like in [6]. One drawback of using passive low-complexity
RISs is less favorable received power dynamics due to extra
path loss between the RIS and its sensing node, increasing
missed detections of the blocker. Additionally, wide main
lobes (i.e., relatively to the blocker’s size) and irregular
beam patterns (e.g., with significant secondary lobes) increase
false alarms. To mitigate these effects prior to positioning,
we first apply a similarity score to the SVD-based power
source separation. This score quantifies how closely the raw
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sensing matrix matches the reconstructed structural channel
alone (i.e., excluding the presumed blocker’s contributions).
It enhances SVD-based signal separation and serves as an
indicator of the reliability of the blocker’s space-time power
signature used for the detection of occupied angular sectors.
Accordingly, in the cooperative positioning step itself, we
consider weighting/selecting observations associated with the
different RISs, depending on the distribution of their respective
similarity scores (over the sectors). Simulation results in a
dense mmWave network scenario illustrate the performance
of the proposed solution, as well as limitations inherent to the
use of RISs in terms of exploitable signal dynamics.

II. SYSTEM MODEL
A. Dense RIS-enabled mmWave Network

We consider a 2-dimensional mmWave network with NV € N
UEs served by M € N densely deployed BSs. Each UE is
associated with its nearest BS. The network contains also
J remotely controllable dual-beam reflective RISs, whose
positions and absolute orientations are known. The closest UE
to a RIS is treated as a sensing node (SN) which collects
RIS-reflected signals from any signal sources (e.g., other
UEs and/or BSs active in transmission). RIS j € [1,J]
is able to scan its environment with its input beam over a
discrete set of azimuth steering angles v, = [t s]se[1,s]
assuming non-overlaping sensed angular sectors of width o
(See Fig. 1). All the necessary coarse synchronization, beam
training and beam alignment operations are assumed to be
performed during an initial access phase, thus focusing only
on steady-state sensing. Hence the maximum directivity gains
are preliminarily configured for both communication (between
all UEs and their serving BSs) and sensing (between sensing
nodes and their associated RISs).

Similarly to [4], we consider the presence of a unique
blocker, i.e. a cylindrical passive object with radius Rp
moving in the network with a relatively low velocity (e.g.
walking human, industrial or wheeled mobile robots), causing
temporary radio blockages. Even though we assume a unique
mobile blocker, our approach could be extended to detect
multiple blockers too. In particular, one could benefit from the
spatial diversity resulting from the multi-RIS sensing, which
is therefore left for future works.

We denote by U = {u,, | n € [1,N]}, B={b,, | m €
[1,M]} and R = {r; | j € [1,J]} the subsets of R? of
UE, BS and RIS positions and by pg[k] € R? the blocker’s
position at time k.

B. Received Power Measurements at RIS-aided Sensing Nodes

We assume a simple Friis path-loss model, where the aver-
age received power Pry[k] over any peer-to-peer transmission
link under blocker’s shadowing at instant k is given by

PRx(t) = PTXGTXGRXGPL(d)X[k]C (1)

where

o Py is the transmit power;

e G4 and GRry are the transmitter and receiver antenna
gains respectively;

o Gpr(d) is the path-loss gain at distance d;

o X[k] = Aexp(—0.125R;%*pg[k]?) is the shadowing
coefficient due to the blocker!, where A represents fully-
shadowed attenuation and ¢ p[k] is the relative blocker
angle to the radio link [4], [6].

o ( represents other constant random shadow-fading con-
tributions (i.e., besides the blocker’s obstruction), consid-
ering that fast-fading fluctuations have been averaged out

For (j,s) € [1,J] x [1,S] at time k, the j-th SN receives

power p, s[k] from its RIS, aggregating reflected signal con-
tributions from I € N non-coherent sources’> while applying
the RIS steering angle v; ;. This power is expressed as

I
pj,slk] = Grsn(dj, ¥j0) Z Gin(Vj,s,Vj0)pjalk] ()
i=0
with
Grsn(dj,v50) = Go(dj)Gout(¥,0)Gsn 3)
where

e d; is the distance between the SN and the RIS;

e pji[k] is the power of the signal from the i-th source
impining onto the RIS, calculated with (1);

o Gin(j,s,v} ;) is the gain of the RIS input beam pointing
at the steering angle v; , with an angle of arrival 1/’3‘,1‘
w.r.t. source ¢, both defined relatively to a local reference,
chosen here as the normal to the RIS (see Fig 1).

o Gout(1),0) is the RIS output beam gain pointing towards
the SN in the direction 1); o;

o Go(d;) is the average channel gain between the j-th RIS
and SN, including path loss and constant shadow effects;

e Ggn is the gain of the SN receive antenna.

III. PROPOSED COOPERATIVE MULTI-RIS SENSING
SCHEME

A. Detection of Occupied Angular Sectors

To detect the angular sectors where the blocker may be
present, each SN maintains a sensing matrix spanning a
window of A time steps for each RIS steering angle. Hence,
at time index k£ € N, the j-th SN collects S power measure-
ments from the sweeping of its RIS input beam over all the
addressable steering angles 1;, as follows

pjilk —A+1] ik
Plk] = : e @
pjslk —A+1] ;5 [K]
When the RIS input sensing beam (in the current steering

direction) is blinded by the blocker, the power received from
surrounding non-coherent sources, lying in the corresponding

'We assume static and non blocking BSs and UEs.
2Sources "outside" the currently aimed sector s may still contribute to the
collected received power through side lobes of the RIS beam pattern.
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Fig. 1: Sensing principle with a dual-beam RIS reflecting ambient
signals from non-coherent sources towards a Rx sensing node, under
transient obstructions caused by a mobile obstacle.

angular sector, may experience significant fluctuations be-
tween consecutive sensing instants. Hence, the terms under
the summation in (2) may vary significantly between each
sweeping operation due to blocker’s shadowing, while all
other dominant contributions are expected to stay constant in
first approximation. Accordingly, for each RIS j, the sensing
matrix can be viewed as the sum of three main components:

Pj[k] = C;[k] + Bj[k] + N [k] ()

where Bj[k] is the blocker’s space-time power signature,
C,[k] comprises the structural channel contributions, while
N j[k] captures all other random fluctuations.

Similar to [4], [6], we then apply a blind source separation
technique based on SVD, decomposing the sensing matrix into
a product of three matrices as follows:

Pj[k] = U; (k=5 [kV ;K] (6)

where U ;[k] € R¥*", V,[k] € RA*", and X;[k] € R"™*" =
diag(o1, 09, ...,0,) with r = rank(P;[k]) < min (S, A) and
o1 > -+ > o, > 0 are the singular values and

ll T
§ : T § : T
Jlllj’leﬁl'F O'll.lj,leJ7

lo
Pkl =) o v+
J A BALN/
=1 I=lg+1 I=l1+1

Cjl¥] B;[k] N;[#]

)

where u; (resp. v;) are the columns of the semi-unitary matrix
U,lk| (resp. Vj[k]) and 1 <o <y <.

An adequate selection of [y and [; enables to retrieve the
blocker’s signature matrix B [k]. Although they can be chosen
by finding abrupt changes in the singular values [4], [6], here,
we propose an adaptive selection scheme based on a similarity
metrics between P;[k] and C,[k|, e.g. using the similarity
index measure (SSIM) inspired by image processing [13].
Assuming NN ;[k] is negligible against C[k] and B,[k|, a
similarity matrix M ;[k] exhibiting high-valued entries means
that P;[k] and C|[k] are very similar. Hence, only little

power fluctuations are left to interpretation in Bj[k] for
detection purposes. Interpreting the absolute signal level in
Bj[k] to directly assess detection quality has proved very
challenging (typically, due to the high variability of the sector-
wise received power from ambient sources). This similarity
metrics can hence serve as meaningful proxy (See Sec. III-C).
The selection of [y is finally performed iteratively start-
ing with an initial guess of 1, and then incrementally
increasing its value until the mean similarity M;[k] =
Zle Zle[Mj [k]]s,+/(SA) < M* for some threshold M*.
Then, a decision is made based on the corresponding matrix
Bj[k] regarding a possible angular sector occupancy, by
selecting the sector index 3;[k] = arg max,cpy g7[b;[k]s.
When such a detection occurs for a particular RIS 7 at time
index k, the occupied sector §;[k] is then associated with the
corresponding relative steering angle ﬁj [k]]. The set of all
relative angles over the available RISs is 1) [k] = [zﬁ] (K]l e,
Both SVD and SSIM are widely used and lightweight
implementations are available (e.g., built-in SVD in Matlab
and Python [14], or fast SSIM [15]). In addition, the sensing
matrix has a relatively small size. The proposed processing
framework is hence expected to comply with most real-time
embedded applications (typically, running at standard UEs).

B. Cooperative Sector-based Positioning Algorithm

Each SN could individually compute a gross estimate of
the blocker position based on their detected occupied sectors.
However, such an estimation would be imprecise due to the
uncertainty in the detection process and the angular quantiza-
tion while scanning. Therefore, we assume the RIS scanning
operations to be coordinated and SNs to synchronously share
angular detection information, either with each other or with
a fusion center. Such a cooperative strategy thus contribute to
improve the estimated global position of the blocker.

The relative orientations of the detected occupied sectors
Plk] = [@ZJ [k]ljequ,sp are converted into absolute angles
O[k] = 1[k] + ¢ where ¢ = [¢;];jc, ) denote the RISs’
absolute orientations w.r.t. an arbitrary global reference system
(e.g., all absolute angles are defined with respect to the [0, z)
axis following the usual direct trigonometric convention).

For a RIS j € [1,J] where the blocker has been detected,
we consider the tuple (r;,6;,a;), where 2 is the angular
width of the occupied sector, which accounts for the RIS input
beam width, the azimuth granularity applied in RIS beam
scanning, but also on the quality of detection itself.

To compute the intersection of all the detected occupied
sectors, we propose an approach based on weighted least
squares (WLS) extending the approaches initially proposed
in [6], [7]. More specifically, for a given sector with absolute
angle 0;, €; € [—a/;[k], o/;[K]] is the relative angular error w.r.t.
the sector orientation®. Let (x;‘,yj) define the closest point
to (Zp,yp) along the line crossing (x;,y;) with orientation
6; +¢;. The optimization problem thus consists in finding the

3In the best case, the assumed uncertainty o [k] = ay.
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Fig. 2: Sector detection process with adaptive SVD-based power source separation and similarity comparison.

location that minimizes the Euclidean distances between the
estimated position of the blocker and the points (z7,y;):

(ip,95) = arg min > (@ —Ee[23])* + (v — B, [3])%)
Ty T;€Ro

®)

The value of o;[k] is the relative uncertainty of detected sector
of RIS j, which can be empirically calculated according to one
of the methods in the following III-C.

Like in [6], after a few mathematical manipulations, one
can show that the 2D position of the blocker can be estimated
by solving a linear equation. This solution can be efficiently
computed at any of the sensing nodes or at a central fusion
center indifferently, after gathering information from the co-
operative sensing nodes. Complete analytical expressions of
this solution can be found in [6].

C. Processing of Detected Angular Sectors before Positioning

The matrix Bj[k] captures not only the desired shadowing
effects caused by the moving object but also fluctuations in
other sectors, mainly via the RIS side lobes. This may prevent
from extracting precisely the blockage signature, which leads
to unexpected false alarms and thus, degrades the positioning
performance. To address this issue, we first empirically analyze
the behavior of the sector detection error as a function of
the corresponding SSIM percentile in the last column vector
m[k] of the corresponding matrix M ;[k]. Intuitively, a
"good" detection shall result in a low percentile value. Let
f(m) be the empirical cumulative probability density function
of m[k], we thus compute the indicator f(m;[k]|s—sx))
corresponding to the detection decision §[k]. On Fig. 3, the
latter percentile is shown to be fairly correlated to the angular
errors, with a steeper increase beyond 60% likely due to false
alarms. Thus, it indirectly reveals when the blocker’s power
signature can be reliably exploited for RIS selection and/or
weighting purposes, as follows:

a) Selection: One RIS contribution at time & is rejected
if the instantaneous percentile value f(my;[k]|,—sx]) exceeds
a threshold, which is empirically set to 60% (See Fig. 3).

b) Weighting: The uncertainty o;[k] in (8) is determined
based on the mean or maximum error functions of the instan-
taneous percentile value f(my[k][;—s5]) (from Fig. 3).

e Detection error

12 Error trend

10 s

Sector Error
o
°

20 40 60 80 100
SSIM Percentile

Fig. 3: Scatter plot of detected sectors’ index errors (over all time
instants), as a function of the SSIM percentile (along with its data-
fitted quadratic interpolant).

IV. NUMERICAL ANALYSIS

A. Simulation Scenario and Parameters

We consider a network of M = 24 BSs and N = 106
UEs. The BSs are uniformly distributed on the edges of a
rectangular area of 160m x 80m and each BS is in communi-
cations with its 4 closest UEs, with tranmist power Pr, = 33
dBm. A system of J = 10 40 x 20-element dual-beam RISs
is placed on 2 parallel horizontal lines, each 20m from the
center of the network. An example of network deployment is
shown in Fig 4. Without loss of generality, we assume DL
communications at 28 GHz in a bandwidth of 400 MHz, so
that all the transmitting BSs contribute as non-coherent sources
to the ambient power received after reflection at the J sensing
nodes, which are associated with their respective closest RISs.
It is also supposed that the RISs scan all their sectors in a
synchronous way between two consecutive detection events.
We apply exacly the signal and channel propagation models
as in [4], incl. the path loss model from [16], after averaging
out the fast-fading but preserving all slow-fading contributions.
Finally, we assume a default angular granularity of 10° for RIS
beam scanning, leading to .S = 18 angular sectors per RIS, and
a time window of A = 30 for building the scanning matrix.
Finally, Rg =3 m and A = 100 dB.

B. Simulation Results and Discussion

Fig 5 presents the detected sectors of some RISs with and
without applying the rejection. As a result, most of false alarms
are eliminated. However, some outliers, for instance in case
of RIS 1, still pass the rejection test since the mean errors
corresponding to their SSIM percentile are relatively small.
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Fig. 4: Canonical network deployment considered in simulations (red
straight line: blocker’s trajectory, big circles: BSs, small circles: UEs
(incl. sensing-nodes), rectangles: RISs).
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Fig. 5: Impact of SSIM-based rejection on false alarms while detect-
ing occupied angular sectors (Ex. for 4 representative RISs).

Fig 6 shows the empirical CDF of localization error with
various pre-processing strategies. We can then notice that re-
gardless of the number of involved RISs, the errors exhibit ap-
proximately the same trends. Particularly, the Max weighting
method after rejection is more accurate than the raw detection,
leading typically to error gains of 3m and 5m at 68% and
95% of the CDF in case at least 5 RISs are used, respectively.
It also outperforms the Mean weighting by considering the
worst-case scenario. On another hand, when having 7 or more
available RISs, the high CDF performance improves (in the
large errors regime), as the uncertainty region decreases when
the number of collaborative RISs increases. These results
emphasize the importance of selective cooperation within such
an opportunistic RIS-aided sensing scheme.

V. CONCLUSION

In this paper, we have presented a cooperative sensing
approach relying on spatially distributed dual-beam RISs,
which can opportunistically leverage the presence of ambient
non-coherent radio sources in very dense mmWave networks
to position a moving obstacle based on received power mea-
surements. Simulations show that basic indicators inheriting
from image processing, typically applied to the results of the
SVD-based source seperation, contribute to both improve RIS-
wise detection performances and properly select/weight RIS
contributions for cooperative positioning. Future works will
assess the sensitivity of the proposed technique to intermittent
and/or mobile non-coherent sources, as well as to multiple

100 Raw detection = =
095 T Rejection

—— Rejection + Mean Weighting
—— Rejection + Max Weighting

0.80

0.68

ECDF

0.40

0.20

0.00
0 12 14

Error (m)

Fig. 6: Empirical CDF of blocker’s estimated location error while
using at least 5 (solid line) or 7 RISs (dashed line) in cooperative
positioning, for various pre-processing strategies.

obstacles. We will also investigate resource allocation schemes
enabling relevant communication-detection trade-offs.
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