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Abstract—This paper presents a Multi-modal Emotion Recog-
nition (MER) system designed to enhance emotion recogni-
tion accuracy in challenging acoustic conditions. Our approach
combines a modified and extended Hierarchical Token-semantic
Audio Transformer (HTS-AT) for multi-channel audio processing
with an R(2+1)D Convolutional Neural Networks (CNN) model
for video analysis. We trained and evaluated our proposed
method on a reverberated version of the Ryerson audio-visual
database of emotional speech and song (RAVDESS) dataset using
synthetic and real-world Room Impulse Responses (RIRs). Our
results demonstrate that integrating audio and video modalities
yields superior performance compared to uni-modal approaches,
especially in challenging acoustic conditions. Moreover, we show
that the multimodal (audiovisual) approach that utilizes multiple
microphones outperforms its single-microphone counterpart.

Index Terms—Emotion recognition, multi-modal, reverberant
conditions, audio transformer

I. INTRODUCTION

Emotion Recognition (ER) is a crucial component in
human-computer interaction, with applications ranging from
healthcare to customer service. Humans naturally express
emotions across multiple modalities, including facial expres-
sions, language, speech, and gestures. Accurately modeling the
interactions between these modalities, which contain comple-
mentary and potentially redundant information, is essential for
effective emotion recognition. Most existing studies primarily
focus on uni-modal emotion recognition, concentrating on
either text, speech, or video [1], [2], [3]. Although signifi-
cant advancements in single-modal emotion recognition have
been demonstrated, these models often fall short in complex
scenarios since they do not utilize the inherently multi-modal
nature of emotional expression. Moreover, research on jointly
employing multi-modal and multi-microphones for ER is rel-
atively scarce. Previous works have made significant strides in
MER. Studies such as [4], [5], [6], [7] have developed systems
that simultaneously analyze visual and acoustic data. In [8],
researchers presented an unsupervised MER feature learning
approach incorporating audio-visual and textual information.
These studies often overlooked the challenges posed by real-
world acoustic conditions, particularly reverberation and noise,
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which can significantly impact the performance of audio-based
emotion recognition. Feature selection is vital in designing
effective MER systems. For acoustic features, log-mel filter-
bank energies and log-mel spectrograms have been widely
adopted [9], [10]. In the video domain, various deep learning
architectures such as VGG16 [11], I3D [12], and FaceNet [13]
have been employed, along with facial features like landmarks
and action units extracted using tools like OpenFace [14].
For the text modality, Global Vectors for Word Representation
(GloVe) [15] have been frequently used [14], [16], [17].

Despite these advancements, a gap remains in addressing
the challenges posed by reverberant and noisy environments.
Real-world acoustic conditions can significantly alter speech
signals, potentially degrading the performance of audio-based
emotion recognition systems. Moreover, the integration of
multi-channel audio processing techniques with video analysis
for emotion recognition in such challenging conditions has not
been thoroughly explored.

This work addresses these limitations by proposing a MER
with multi-channel audio that outperforms solutions solely
based on single-channel audio. We propose a novel approach
that combines two state-of-the-art architectures for audio-
visual emotion recognition. The multi-channel extension of
the HTS-AT architecture for the audio modality [18] and the
R(2+1)D CNN model [19] for the video modality. We use a
reverberated version of the RAVDESS [20] dataset to analyze
the proposed scheme’s performance. Reverberation was added
by convolving the speech utterances with real-life RIRs drawn
from the Acoustic Characterisation of Environments (ACE)
challenge dataset [21]. The code of the proposed method is
available.1

II. PROBLEM FORMULATION

Denote the two modalities as M = {video, audio} and the
set of emotions as:

E = {happy, calm, sad, angry, . . .
neutral, fearful, disgust, surprised}. (1)

Let v(t) be the video signal and s(t) the anechoic audio signal,
with t the time index. An array of C microphones captures

1 https://github.com/OhadCohen97/Multi-Microphone-
Multi-Modal-Emotion-Recognition-in-Reverberant-
Environments.
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the audio signal after propagating in the acoustic environment.
The signals, as captured by the microphones, are given by:

yi(t) = {s ∗ hi}(t), i = 1, 2, . . . , C, (2)

where hi(t), i = 1, 2, . . . , C, are the RIRs from the source to
the ith microphone. The feature embeddings for each modality
are denoted fv and fs, respectively. This study aims to classify
the utterance to one of the emotions using the available
information and utilizing the relations between the feature
embeddings of both modalities:

M
{
v(t), {yi(t)}Ci=1

}
⇒ fv ⊕ fs ⇒ E, (3)

where ⊕ stands for late fusion concatenation.

III. PROPOSED MODEL

Our proposed MER architecture combines two powerful
models: the modified and extended HTS-AT [18] for multi-
channel audio processing and the R(2 + 1)D model [19]
for video analysis. These uni-modal models are integrated to
create a robust multi-modal system for emotion recognition in
challenging acoustic conditions.

The input features of the models are the mel-spectrograms
for the audio track and the raw RGB facial images for the
visual track. For the audio modality, we followed the same
preprocessing procedure as in [18] and used the SpecAugment
Library [22] to augment the mel-spectrograms. For augment-
ing the video modality, we used the TorchVision Library [23].
Audio: The extended multi-channel HTS-AT model addresses
the integration of multi-microphone information, employing
the Swin-Transformer architecture [24],2 a variant of the
Vision Transformer (ViT) [25] architecture. The architecture
is also applicable to the single-microphone configurations,
namely C = 1. The model’s architecture consists of four
groups, each comprising Swin-Transformer blocks with vary-
ing depths. In addition, the model uses a hierarchical structure
and windowed attention mechanism to efficiently process mel-
spectrograms, which serve as our audio feature extractor. We
use the two multi-channel variants with the modified HTS-AT
module, as proposed in [18]: 1) Patch-Embed Summation -
the mel-spectrogram of each channel is processed through
a shared Patch-Embed layer, after which the outputs are
summed across channels; and 2) Average mel-spectrograms -
mel-spectrograms from multiple channels are averaged before
being fed into the model. More details can be found in [18].
Video: For video feature extraction, we employ the pre-
trained R(2 + 1)D model, an 18-layer ResNet-based archi-
tecture designed for action recognition. The R(2+1)D model
decomposes the 3D convolutions into separate spatial (2D)
and temporal (1D) convolutions, which allows it to effectively
capture both spatial and temporal features in the video data.
Fig. 1 presents the integration of the two modalities.
Feature Concatenation: The feature embeddings are ex-
tracted from the extended multi-channel HTS-AT and the
R(2 + 1)D models, followed by concatenation to create a

2github.com/microsoft/Swin-Transformer

unified multi-modal representation. This combined feature
vector captures audio and visual cues relevant to emotion
recognition. The concatenated features are then passed through
two fully connected layers for final classification. These layers
learn to interpret the combined audio-visual features and to
map them to emotion categories. The output of the final layer
corresponds to the predicted emotion class. This integrated
scheme ensures that the multi-channel audio and visual data
are effectively processed and leveraged. This allows the model
to capture and utilize complementary information from both
modalities, thus achieving improved ER accuracy.

IV. EXPERIMENTAL STUDY

This section outlines the experimental setup and describes
the comparative analysis between the proposed scheme and a
baseline method.

A. Datasets

Our work utilized the RAVDESS dataset for emotion
recognition. This dataset includes 24 actors, equally divided
between male and female speakers, each delivering 60 English
sentences. Hence, there are 1440 audio-video pairs represent-
ing eight different emotions (‘sad,’ ‘happy,’ ‘angry,’ ‘calm,’
‘fearful,’ ‘surprised,’ ‘neutral,’ and ‘disgust’). All utterances
are pre-transcribed. Therefore, the emotions are expressed
more artificially compared to spontaneous conversation. The
RAVDESS dataset is balanced across most classes except for
the neutral class, which has a relatively small number of
utterances. We used an actor-split approach, dividing the data
into 80% training, 10% validation, and 10% test sets, ensuring
no actor appears in more than one split. As a result, model
accuracy may be lower than reported in some prior works
because the test set includes actors not seen during fine-tuning.
As publicly available multi-microphone datasets for Speech
Emotion Recognition (SER) do not exist, we generated our
own dataset. We used synthesized RIRs to fine-tune the multi-
channel experiment model. We employed the ‘gpuRIR‘ Python
package3 to simulate reverberant multi-channel microphone
signals (setting the number of microphones to C = 3).
Each clean audio sample from the RAVDESS dataset was
convolved with distinct multi-channel RIRs, resulting in 1440
3-microphone audio samples. The associated video data is
unaffected by reverberation. We simulated rooms with lengths
and widths uniformly distributed between 3 m and 8 m,
maintaining a constant height of 2.9 m and an aspect ratio
between 1 and 1.6. We randomly positioned the sound source
and microphones within these simulated environments under
the following constraints. The sound source was placed at a
fixed height of 1.75 m, with its x and y coordinates randomly
determined within the room, ensuring a minimum distance
of 0.5 m from the room walls. Similarly, the microphones
were positioned at a fixed height of 1.6 m, with their x
and y coordinates also randomly determined within the room
dimensions. The reverberation time was set at the range

3github.com/DavidDiazGuerra/gpuRIR
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Fig. 1: The proposed Multi-modal Emotion Recognition (MER).

T60 = 500 − 850 ms. The distance between the sound
source and microphones was randomly selected in the range
[0.2, dc] m, where dc to the critical distance, determined by
the room’s volume and T60. This ensures the dominance of
direct sound over reflections. Finally, we added spatially-
white noise with signal-to-noise ratio (SNR) of 20 dB to each
reverberant signal. This noise was synthesized by applying an
auto-regressive filter of order 1 to a white Gaussian noise,
emphasizing lower frequencies.

The proposed scheme was evaluated using real-world RIRs
drawn from the ACE database [21]. The ACE RIR database
comprises recordings from seven different rooms with varying
dimensions and reverberation levels (see Table II). We only
used a subset of the database, recorded with a mobile phone
equipped with three microphones in the near-field scenario,
which is a practical choice for real-world SER applications.
We convolved all audio utterances of the test set with the ACE
RIRs to generate 3-microphone signals for each utterance.

B. Algorithm Setup

As discussed earlier, the video modality leverages the
R(2+1)D model pre-trained on the action recognition Kinetics
dataset [26]. To better suit our ER task, we modified the
model’s architecture by adjusting the final linear layer. Specif-
ically, we reconfigured it to output 768-dimensional feature
embeddings. This adjustment ensures that both modalities
(video and audio) contribute equally-sized feature vectors to
the multi-modal representation by fusion through concatena-
tion.

The resolution of the RGB video frames was first reduced
to 224 × 224 pixels. Then, eight frames from the video
stream were randomly selected. To augment the dataset, these
frames underwent refinement through random cropping using
the TorchVision Library [23], yielding 180 × 180 images
that enhance the model’s robustness to spatial variations. In
addition, we added random horizontal and vertical flips, each
with a 30% probability of application, coupled with arbitrary
rotations within the range of [-30◦, 30◦].

The audio modality applies an extended version of the
HTS-AT model [18], suitable for both multi-channel and

single-channel scenarios. As described in Sec. III, the net-
work structure configuration is arranged into four groups,
each containing several Swin-Transformer blocks: 2, 2, 6,
and 2, respectively. The mel-spectrogram input is initially
transformed into patches and linearly projected to a dimension
of D = 96. This dimension expands exponentially through
each transformer group, finally reaching a dimension of 768
(8D = 768), which matches the design principles of Audio
Spectrogram Transformer (AST). Pre-processing was carried
out as explained in [18] both for multi-channel and single-
channel experiments. We augmented the mel-spectrograms
by using the SpecAugment Library [22], which consists of
temporal masking, occluding four distinct “strips”, each 64
time-frames long. Complementing this, we applied frequency
domain masking, obscuring two strips, each 8 frequency bands
wide.

Our multi-modal approach combines the feature embed-
dings from both the video and audio modalities. The 768-
dimensional feature vectors extracted from the R(2 + 1)D
model and the extended HTS-AT model are concatenated,
resulting in a 1536-dimensional feature representation. This
combined feature vector is then fed into a classification head
for prediction. The right-hand side of Fig. 1 presents two fully
connected layers (fc) with a Relu activation function between
them, forming the sequence:

fc1 → ReLU → fc2 ⇒ E (4)

The fine-tuning processes are applied using the Adam
optimizer with a learning rate of 1e−3 and a warm-up strategy.
We used cross-entropy loss as the metric with a batch size of
32. The maximum number of epochs was set to 500 for all
experiments, with an early stopping strategy with a patience
of 12 to prevent overfitting. In practice, the maximum number
of epochs was never reached, as the fine-tuning process was
halted earlier due to the activation of the patience parameter.
The overall number of parameters for the fine-tuned models
are as follows: 32.3M for the uni-modal scheme based on
video, 28.7M for the uni-modal scheme based on audio, and
62.7M for the multi-modal scheme.
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TABLE I: The Accuracy results of single-microphone MER
method compared with SOTA MER methods tested on the
original RAVDESS dataset. Results for the competing methods
are taken from the corresponding articles.

Methods ACC (%)

Human performance [20] 80.00

Garaiman et al. [27] 65.76
Ghaleb et al. [28] 76.30
Franceschini et al. [8] 78.54
Radoi et al. [29] 78.70
Luna-Jiménez et al. [30] 80.08
Proposed MER (C = 1) 80.00

C. Results

Table I compares the performance of the proposed MER ap-
proach (single-microphone variant, C = 1) with several state-
of-the-art (SOTA) MER approaches evaluated on RAVDESS.
The results indicate that our single-microphone MER achieves
performance on par with [8], [29], [30]. Moreover, to as-
sess and visualize the separation capabilities of the proposed
scheme across the clean RAVDESS dataset, we employed
the t-distributed Stochastic Neighbor Embedding (t-SNE) vi-
sualization method. This nonlinear technique reduces high-
dimensional data into two- or three-dimensional representa-
tions suitable for graphical visualization. Importantly, it maps
nearby points in the high-dimensional space to close points
in the reduced space, while far-apart points remain distant
in the visualization [31]. In Fig. 2, we compare the t-SNE

(a) RAVDESS: Features (b) RAVDESS: Network output

Fig. 2: t-SNE visualization.

mapping of the input features extracted from the RAVDESS
dataset and the network output, depicting each emotion with
a unique color and shape to visualize the clustering quality.
The enhancement in classification performance following the
network’s application is immediately apparent.

We now turn to the evaluation of the multi-channel schemes,
using the reverberant RAVDESS dataset version, applying
MER with a multi-microphone (C = 3). Table II details our
Accuracy results of the various emotion recognition schemes
for seven different rooms from the ACE database. The video-
only modality is compared with the audio-only modality (both
single- and multi-channel models) and the combined multi-
modal approach. As the video modality is unaffected by
the acoustic conditions, we only report the results once. We
investigated two single-channel (C = 1) variants: one fine-
tuned on clean speech and the other on reverberant speech.
Both were evaluated using a single microphone from the ACE

test set. To assess the reliability of our results, we report the
mean results together with 75% confidence intervals.4

(a) RAVDESS in ACE Office 2
(T60 = 390 ms).

(b) RAVDESS in ACE Lobby
(T60 = 646 ms).

Fig. 3: Accuracy and confidence intervals assessed using the
reverberated RAVDESS test set for two different rooms from
the ACE database.

Analyzing Table II, it is observed that for the audio-
only schemes, the multi-channel processing methods (Avg
mel and Sum PE) consistently outperform the single-channel
approaches. This is in line with the findings of [18]. Notably,
the multi-modal approaches significantly outperform their uni-
modal counterparts. These results are also visually demon-
strated in Fig. 3, demonstrating the advantages of multi-modal
processing. In addition, Fig. 4 presents the confusion matrix

Fig. 4: Confusion matrix of the results of multi-channel Sum
PE MER model on RAVDESS test set convolved with ACE
Lecture Room 2 (T60 = 1220 ms).

for the multi-channel Sum PE MER model. The confusion
matrix compares the actual target and predicted labels, show-
ing the percentage of correct and incorrect predictions for
each class. Beyond measuring accuracy, it also reveals the
distribution of errors across different emotions, helping to
identify specific misclassifications.

V. CONCLUSIONS

In this paper, we presented a MER system designed to
operate in reverberant and noisy acoustic environments. Our
approach demonstrates robust performance across a range of

4github.com/luferrer/ConfidenceIntervals
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TABLE II: Accuracy and the associated confidence intervals of the proposed method for the RAVDESS test set reverberated by
RIRs drawn from the ACE database (using the 3-microphone of the near-filed cellular phone). The ‘Single-Channel’ columns
use an arbitrarily chosen microphone, fine-tuned on either clean or reverberant data, respectively. The ‘Avg mel’ columns
present results with mel-spectrograms averaged across three channels during fine-tuning and testing. The ‘Sum PE’ columns
depict the Patch-Embed fusion approach fine-tuned and tested on the three channels. The asterisk in the video column describes
the same result. The best results for each modality are underlined, while the overall best result is shown in boldface.

Room (T60 [ms]) Video Audio MER

Clean Single-Channel Rev Single-Channel Avg mel Sum PE Clean Single-Channel Rev Single-Channel Avg mel Sum PE

Lecture 1 (638) 69.4 (65.5-73.3) 42.7 (38.8-47.2) 60 (55.5-64.4) 61.6 (57.7-65.5) 61.1 (57.2-65) 70 (66.1-73.8) 75.0 (71.1-78.8) 77.2 (73.3-81.1) 78.3 (74.4-81.6)
Lecture 2 (1220) * 40.5 (36.6-45) 55 (50.5-59.4) 60.5 (56.1-64.4) 58.8 (54.9-62.8) 71.6 (67.7-75.5) 76.1 (72.7-79.4) 76.1 (72.7-80) 78.3 (75.0-81.6)
Lobby (646) * 40.5 (36.6-45) 57.2 (53.3-61.1) 63.3 (59.4-67.22) 69.4 (65.5-73.3) 68.3 (64.4-72.2) 73.3 (69.4-77.2) 77.2 (73.3-81.1) 77.7 (74.4-81.1)
Meeting 1 (437) * 42.7 (38.8-46.6) 57.2 (52.7-61.6) 60 (56.1-63.8) 61.1 (57.2-65) 70 (66.1-73.8) 72.7 (68.8-76.6) 77.2 (73.8-81.1) 78.8 (75.5-82.2)
Meeting 2 (371) * 38.8 (34.4-42.7) 56.1 (51.6-60.5) 62.7 (58.8-66.6) 59.4 (55.5-63.8) 71.1 (67.2-75) 75 (71.1-78.8) 78.8 (75.5-82.2) 75.5 (71.6-78.8)
Office 1 (332) * 42.7 (38.3-46.6) 59.4 (55-63.3) 62.7 (58.8-68.3) 63.3 (58.8-67.2) 70 (66.1-73.8) 75 (71.1-78.8) 77.7 (74.4-81.6) 77.2 (73.8-80.5)
Office 2 (390) * 47.7 (43.3-52.2) 56.6 (52.2-60.5) 64.4 (60.5-68.3) 60.5 (56.6-64.4) 68.8 (65-72.7) 70 (66.1-73.8) 74.4 (70.5-78.3) 75.5 (71.6-78.8)

realistic acoustic conditions by combining an extended multi-
channel HTS-AT for audio processing with an R(2 + 1)D
model for video analysis. The MER system combines audio
and visual modalities, consistently outperforming uni-modal
approaches. Using synthetic RIRs for training and real-world
RIRs from the ACE database for testing, we comprehensively
assess our system’s performance in diverse acoustic envi-
ronments. Moreover, the utilization of multi-channel audio
processing, particularly the Patch-Embed summation, proves
beneficial in mitigating the effects of reverberation and noise
over the single-channel case. This leads to the potential of our
MER system for applications in various real-world scenarios
where acoustic conditions may be far from ideal. Future work
could further improve the system’s performance in extremely
reverberant environments and explore its effectiveness in other
emotional datasets.
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