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Abstract—This paper proposes a new multi-channel Speech
Enhancement (SE) method that simultaneously performs denois-
ing, dereverberation, and source separation. The method com-
bines a diffusion model-based approach, the multi-stream Score-
based Generative Model for Speech Enhancement (ms-SGMSE),
with a signal processing-based approach, the Convolutional
Beamformer (CBF). We refer to this integrated method as the
Diffusion model with CBF (DiffCBF). By leveraging the strengths
of both methods, it improves estimation accuracy through iter-
ative refinement. Additionally, it can process captured signals
regardless of the number of speech sources as long as the source
count is provided, making it highly versatile. Experimental results
demonstrate that the proposed method significantly enhances
the quality of clean speech from noisy and reverberant speech
mixtures, greatly outperforming a conventional diffusion model-
based source separation method.

Index Terms—Diffusion model, source separation, denoising,
dereverberation, multi-input multi-output, microphone array

I. INTRODUCTION

This paper proposes a new multi-channel Speech Enhance-
ment (SE) approach based on the diffusion model [1]-[3].
Speech signals captured by distant microphones are often
degraded by noise, reverberation, and overlapping speech.
The goal of multi-channel SE in this paper is to restore
clean speech signals from such degraded inputs by combining
denoising, dereverberation, and speech separation.

For multi-channel SE, deterministic Neural Network (NN)-
based and Signal Processing (SP)-based approaches have been
developed [4]. NN-based SE [5]-[7] learns a mapping from
distorted speech to clean speech using training data, achieving
high-quality SE when training and test conditions align. SP-
based SE (e.g., [8], [9]), on the other hand, relies on assump-
tions about room acoustics and signal characteristics, typically
not requiring prior training to achieve SE. It demonstrates
high adaptability to various test conditions. Recognizing the
complementary strengths of these approaches, researchers have
actively explored techniques that integrate them, often leading
to state-of-the-art SE performance [10]-[13].

Recently, the diffusion model [1], [2], an emerging proba-
bilistic NN-based technology, has shown success in applica-
tions such as denoising [14], dereverberation [3], [15], and
source separation [16], partially surpassing the deterministic
NN approach. It models the conditional density of clean
speech given distorted speech and samples clean speech es-
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timates from this density. Compared to deterministic NN-
based SE, it enhances perceptual speech quality [15] and
improves robustness against training-test mismatches [3]. It
can also significantly improve signal-level distortion metrics
like the Signal-to-Distortion Ratio (SDR) [17] using ensemble
inference [18], [19]. A representative method based on the dif-
fusion model is the Score-based Generative Model for Speech
Enhancement (SGMSE) [3]. It has been extended to a single-
channel source separation method, DiffSep [20]. In addition,
the multi-stream SGMSE (ms-SGMSE) enables multi-channel
processing for simultaneous denoising and dereverberation
[21], and can be integrated with other SE methods to enhance
estimation accuracy [18], [22], [23].

Despite its potential, diffusion model-based SE has yet to
be tested in challenging recording conditions that require si-
multaneous source separation, denoising, and dereverberation.
For instance, as our experiments will show, applying DiffSep
[20] in such conditions does not yield satisfactory results.
This limitation prevents the approach from reaching its full
potential.

Based on the above research background, this paper pro-
poses a new multi-channel SE method based on ms-SGMSE.
Unlike DiffSep, which independently performs source separa-
tion, the proposed method combines an SP-based SE tech-
nique, the Convolutional Beamformer (CBF) [9], with ms-
SGMSE. While CBF performs simultaneous denoising, dere-
verberation, and source separation (without prior training), ms-
SGMSE refines each CBF output using the diffusion model.
We refer to this integrated method as the Diffusion model
with CBF (DiffCBF). DiffCBF utilizes iterative estimation to
combine the strengths of both methods. Additionally, DiffCBF
can effectively process a captured signal regardless of the
number of speech sources as long as the source count is
known. Experimental results show that DiffCBF effectively
addresses challenging noisy and reverberant speech mixtures,
greatly outperforming the conventional DiffSep method.

II. PROBLEM DEFINITION

Suppose an array of M microphones captures a mixture
of N reverberant speech signals with diffuse noise. In this
paper, multi-channel SE refers to the process of estimating the
direct component of each speech signal, referred to as a clean
speech signal, from such a captured signal. We denote the
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captured signal as y € CF*T*M and each clean speech signal

as @, € CFXT*M for 1 < n < N in the complex spectrum
domain, where F' and T denote the numbers of frequencies
and time frames, respectively.

III. CONVENTIONAL METHODS

This section describes two conventional methods: CBF [9]
and ms-SGMSE [21], [23]. They will be incorporated into our
proposed method in the next section.

A. Convolutional Beamformer (CBF)

CBF is a multi-channel SE method that can work with no
prior training on the signals or recording conditions [9]. In-
stead of relying on prior training, it assumes that the captured
signal is a convolutional mixture of N (< M) speech signals
and stationary noise signals. To recover the clean speech
estimates, it uses Multi-Channel Linear Prediction (MCLP)
to dereverberate the captured mixture [24] and Beamformer
(BF) to separate and denoise the dereverberated mixture into
clean speech estimates [25], [26].

Lety, ; € CM represent the captured signal at a time frame
t and a frequency f. CBF then performs multi-channel SE at
each frequency:

Pl =w <yt, ZG Y Tf> (1)

CBF CBF ~CBF ~CBF GCBE T
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CM is a vector containing estimated N speech 51gnals

g?f n—1 and noise signals {6577}y, , and (-)" and
(- ) denote the conjugate and non-conjugate transpose opera-
tors. The terms in parentheses in (1) correspond to MCLP with
prediction matrices G, 5 € CM*M for D < 7 < L, where L
and D are the prediction order and delay. W € CM*M js a
BF matrix applied to the output of MCLP.

To estimate the prediction matrices and the BF matrices,
CBF assumes that each speech signal at each Time-Frequency
(TF) point follows a complex Gaussian distribution with a
TF-dependent variance, A, ¢, and that each noise signal is
stationary Gaussian. By further assuming mutual independence
between the signals and noise over TF points, we derive the
following log-likelihood function for the estimation.

L(0) =logp (y;0) +logp ({ M t.f .t 9,\) 2
CBE|2
5[50 (e + ) 4 5 o]
n=1 n,t,

+2TZlog|deth|+Zlogp (An,t,£36x) + const., (3)
n,t, f

where 0 = {{Antftnt s {Wists, {Gr )} is a set
of parameters to be estimated by maximizing (3), and
log p({Mnt.f }n.t,r;6x) is an optional term representing the
prior distribution of A, ; y based on its prior knowledge, 6.

An advantage of CBF, which will be leveraged in our
proposed method, lies in its flexible mechanism for improving
estimation based on the availability of the prior knowledge,
#» [11]. Without 8, we can estimate 6 in an unsupervised
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Fig. 1. Processing flow of DiffCBF. The symbols, i7 F and mD M denote
the outputs of CBF and ms-SGMSE (i.e., Diffusion Model), respectlvely All
ms-SGMSE blocks in the figure utilize the same score model.

learning manner, disregarding the optional term. On the other
hand, if reliable estimates of clean speech power spectra,
0215 = E{lznss[?}, are available, such as those obtained
from a NN, we can enhance estimation accuracy by incorpo-
rating the prior term. The prior distribution is defined by using
the inverse Gamma distribution:

PAne 3 00) = IG5, ), )

with the shape parameter o > 0 and setting the scale parameter
8= ofmy - In both scenarios, we can derive computationally
efficient estimation algorithms for CBF (see [9] for details).

Note that CBF can provide a multi-channel clean speech
estimate for each n, denoted as :ECBF CFXTxM through a
post-processing step called projection back [27]. This version
of CBF output is used in our proposed method.

B. ms-SGMSE

SGMSE is a single-channel SE method based on the diffu-
sion model [3]. It models the conditional density of a clean
speech signal given the captured signal, i.e., p(x|y), using
the diffusion process. The method performs SE by sampling a
clean speech estimate from this density. This is accomplished
by solving a reverse Stochastic Differential Equation (SDE),
with the conditional score estimated by a NN.

ms-SGMSE is a multi-stream extension of SGMSE [21],
[23]. It incorporates additional signal streams, denoted by Y,
into the density to be modeled, i.e., p(x|y, x), as additional
conditions. It enables more precise distribution modeling,
leading to improved SE accuracy. It has been demonstrated
that ms-SGMSE can realize multi-channel denoising and
dereverberation by adding microphone signals as additional
streams [21]. Furthermore, it can leverage enhanced signals
obtained from various other SE methods as additional streams,
proving highly effective in improving SE accuracy [23].

IV. PROPOSED METHOD: DIFFCBF

This subsection describes our proposed method, DiffCBF,
which realizes accurate multi-channel SE by integrating CBF
and ms-SGMSE. Refer to the advantages summarized in
Section IV-C for the motivation behind the approach.
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A. Processing flow

Figure 1 illustrates the processing flow of DiffCBF, which
iteratively alternates between CBF and ms-SGMSE to improve
SE progressively.

In the first iteration, given the captured signal y and the
number of speech signals N, the method begins by applying
CBF to y in an unsupervised manner, without using the prior
term 1n (3) This yields N clean speech estimates, denoted
as {w _1. Next, for each n, ms-SGMSE is applied to
y, where the output &, CBFE from CBF serves as an additional
stream in the dlffusmn P/[rocess This results in improved clean
speech estimates, {:B _1. In subsequent iterations, CBF
additionally receives, as pr1or knowledge 6, the power spectra
of the clean speech estimates obtained by ms-SGMSE in the
previous iteration. As a result, each new iteration allows CBF
to utilize the inverse Gamma prior with the given 6, in (4)
and thus can enhance estimation accuracy.

In the flow described above, ms-SGMSE performs SE by
solving the following reverse SDE [2], [3], [23], [28]:

dzi = [ (z0y) + g (0)r (b, 2, y, 85 50) | db
+ g(k)dw, ®)

where z;, € CFXT*M jg the state of the diffusion process at a
state index k, f(zy,y) = y— 2 and g(k) = ca® for constants
¢,a > 0 are the drift and noise scheduling functions, v > 0
is a stiffness parameter, and w is a standard Wiener process
in reverse time. r is a NN, called the score model, which
approximates a score of the diffusion process:

C F) CBF). (6)

r(k,zp, Yy, ~ V., pe(2zk|y, @

ms-SGMSE initializes z; at k = K as zx = y+ dxu, where
d0f is the standard deviation of the perturbation kernel of the
diffusion process and u is a sampled complex white Gaussian
noise with an identity covariance matrix. Then it realizes SE
by iteratively solving the reverse SDE from k£ = K to k = 0.
The clean speech estimate is finally obtained as :i:,? M — 2.

B. Training of score model

DiffCBF requires prior training only for the score model.
Given a set of training data, each consisting of «,, y, and
dng , we adopt the following loss to train the score model
based on the diffusion model framework [2], [23]:

2

» (1)

2

u
CBF,UJ)-’-*

Cw) = 5

(k 2k, Y, T

B @y, 5057 ) ||T

where w is a set of parameters of the score model,
and By (o, 4 2C5F), denotes the expectation over k,

(@n,y, &, ") ~ p(@n, y, 2, 7). and u.

One issue in the training process is how to prepare &,, . In
our experiments, we first obtained wgB using CBF w1thout
the prior term and trained the score model. Next, we generated
:%S F using CBF with the prior term, based on the output
from ms-SGMSE in the first iteration. Finally, we retrained
the score model using the outputs from both versions of CBF:

one with and one without the prior term.

~CBF

TABLE I
SE TASKS USED FOR EVALUATION
#Sources| Training- #Utterances
Task (N) Test Train Valid Eval
Source separation 2 Matched |3569 2500 166
Single-speech enhancement 1 Mismatched| - - 333

C. Advantages of DiffCBF

A key feature of DiffCBF is its ability to process any
number ‘N’ (< M) of speech signals, provided that the
number N is known and a pre-trained score model is available.
Specifically, CBF can yield a specified number of clean speech
estimates both with and without the prior term. Meanwhile,
ms-SGMSE extracts each speech estimate individually from
the captured signal, using the single pre-trained score model
conditioned by each CBF output.

Furthermore, DiffCBF achieves highly accurate multi-
channel SE by leveraging the ms-SGMSE framework, con-
ditioned on the enhanced speech obtained from CBF, and
incorporating the iterative estimation scheme in the method.

V. EXPERIMENTS

We experimentally evaluated DiffCBF for SE tasks in-
volving simultaneous denoising, dereverberation, and source
separation. As a baseline, we used the single-channel source
separation method, DiffSep. We also assessed Diff CBF’s per-
formance with increased iterations and when the number of
speech sources differed from that in the training data.

A. SE tasks used for evaluation

We created two SE tasks for the experiments, as shown in
Table I. In the source separation task, we trained and tested SE
methods using a dataset containing signals with two speech
sources (i.e., N = 2). In the single-speech enhancement
task, we used a different dataset containing signals with a
single speech source (i.e., N = 1) to test the SE methods
trained for the source separation task. As a result, the single-
speech enhancement task involved a mismatch in the number
of speech sources between training and testing. Table I also
shows the number of utterances included in the training and
validation sets used for model training and the evaluation set
used for testing, for each task.

We simulated each captured signal in the datasets by mixing
N (=1 or 2) speech signal(s) randomly taken from the Wall
Street Journal (WSJO) dataset [29] and 10 noise signals from
the CHiME3 dataset [30] after convolving each signal with
a Room Impulse Response (RIR). We also simulated each
clean speech target using the same RIR truncated at 2 ms
after the direct signal. We generated the RIRs using the image
method, setting the room size to 5 X 5 X 2 m. The speakers,
the array, and the noise sources were randomly positioned
for each utterance; the speaker-array distance was constrained
between 0.5 and 1.5 m. We used three microphones (M = 3)
to simulate each utterance. These microphones were randomly
selected from a set of eight microphones, equally spaced on
a linear array with a 2 cm distance between each, following
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the Multiple Array-Geometry (MAG) training [21]. The rever-
berant speech mixture to the noise ratio and the reverberation
time (T60) varied from 10 to 14 dB and 0.2 to 1.0 s. The
sampling frequency was set at 8§ kHz.

B. Methods to be compared and analysis conditions

We compared our proposed method, DiffCBF, with DiffSep.
We also examined the output of CBF in DiffCBF.

For DiffCBF, we implemented ms-SGMSE by modifying
the publicly available code for SGMSE.! The score model was
trained as described in Section IV-B, with the number of itera-
tions set to two. We used the Adam optimizer with a learning
rate of 1.0 x 10~ and applied exponential weight averaging.
The hyperparameters were set to vy = 1.5, ¢ = 1.07x 107!, and
a = 10.0. We employed the short-time Fourier transform with
transformed amplitudes [3]. To solve the reverse SDE, we used
predictor-corrector sampling [2], with the number of diffusion
steps set to 30. For CBF in DiffCBF, the hyperparameters were
setto D =1, L = 10, and a = 1 with the analysis window
length and shift set at 128 and 64 ms.

Although DiffSep is a single-channel source separation
method, we adopted it as the baseline because, to our knowl-
edge, no multi-channel SE methods based on diffusion models
have been proposed that can cope with our SE task. To address
our SE task, we configured DiffSep to separate three signals
(two clean speech estimates and one signal containing noise
and reverberation) following the configurations outlined for
denoising and source separation in [20]. We used only the
two speech estimates for evaluation. The publicly available
code for DiffSep was used for the implementation.?

For both DiffCBF and DiffSep, we adopted ensemble in-
ference [18], [19], which has been shown to improve the
accuracy of diffusion model-based SE. We sampled the en-
hanced signals eight times with different random seeds for
each method and computed their mean to obtain the final
enhanced signal. Note that the order of sources estimated by
DiffSep may differ over different samples. Thus, we aligned
the order using the clean reference before performing the
ensemble. This alignment is unnecessary for DiffCBF as each
application of ms-SGMSE in DiffCBF yields only a single
speech estimate.

The trainable parameter sizes of ms-SGMSE (used in Dif-
fCBF) and DiffSep were 65.8 MB and 65.7 MB, respectively.
With ensemble inference, their real-time factors (RTFs) were
4.50 and 4.07, respectively.

C. Evaluation metrics

For evaluation, we adopted improvements in the Scale-
Invariant SDR from observation (SI-SDR-Imp) [31] as a signal
distortion metric, the Perceptual Evaluation of Speech Quality
(PESQ) [32] for overall speech quality, and Extended Short-
Time Objective Intelligibility (ESTOI) [33] for speech intelli-
gibility. We also used the overall (OVRL) metric of the Deep
Noise Suppression Mean Opinion Score (DNSMOS) [34] as
a non-intrusive speech quality metric.

Ihttps://github.com/sp-uhh/sgmse
Zhttps://github.com/fakufaku/diffusion-separation

TABLE II
EVALUATION RESULTS FOR SOURCE SEPARATION TASK, WHERE ‘ITER’
INDICATES ITERATION COUNTS FOR DIFFCBF. SI-SDR, PESQ, ESTOI,
AND OVRL OF CAPTURED SIGNALS WERE -8.1 DB, 1.39, 0.32, AND 2.0.

SI-SDR-Imp PESQ ESTOI | OVRL

Iter 1 2 1 2 1 211 2
DiffSep 6.5 dB 2.06 0.42 3.0

CBF (in DiffCBF) |59 dB 5.7dB [1.71 1.74|0.53 0.54(2.4 2.4

DiffCBF (proposed) |14.6 dB 15.1 dB|2.97 3.04|0.81 0.83/4.0 4.0

TABLE III
EVALUATION RESULTS FOR SINGLE-SPEECH ENHANCEMENT TASK, WITH
A TRAINING-TEST MISMATCH IN THE NUMBER OF SPEECH SIGNALS
INCLUDED IN THE CAPTURED SIGNAL. SI-SDR, PESQ, ESTOI, AND
OVRL OF CAPTURED SIGNALS WERE -3.7 DB, 1.65, 0.46, AND 2.2.

SI-SDR-Imp PESQ ESTOI | OVRL

Iter 1 2 1 2 1 211 2
DiffSep 6.6 dB 2.80 0.60 3.7

CBF (in DiffCBF) | 3.7 dB 3.9 dB [2.04 2.10(0.65 0.68|2.7 2.7

DiffCBF (proposed) |12.6 dB 12.7 dB|3.47 3.51|0.88 0.89 (4.1 4.1

While DiffCBF generated three-channel speech estimates,
DiffSep produced only a single-channel estimate. Thus, we
utilized only the common channel shared between them for
evaluation.

D. Evaluation results

Table II presents the evaluation results for the source separa-
tion task.> While all methods showed improvements across all
metrics from the captured signals, DiffCBF significantly out-
performed the others. The iterative estimation also enhanced
DiffCBF’s performance. For instance, DiffCBF achieved a
substantial SI-SDR-Imps, 14.6 and 15.1 dB, at iterations 1 and
2, respectively. In contrast, DiffSep achieved a more modest
SI-SDR-Imp, 6.5 dB.

Table III presents the evaluation results for the single-speech
enhancement task, where we used DiffSep and DiffCBF, both
trained for the source separation task. Since DiffSep produced
two speech estimates for each utterance, we selected the one
with the higher SI-SDR for evaluation. In contrast, DiffCBF
generated a single speech estimate as desired by setting
N = 1. While all methods improved all metrics, DiffCBF
significantly outperformed the others.

These results clearly highlight the effectiveness of DiffCBF
for both tasks. Its superiority over DiffSep can be attributed to
its multi-channel processing capability, facilitated by the ms-
SGMSE framework, along with its integration with CBF and
the iterative estimation scheme. Additionally, DiffCBF proved
effective even with a training-test mismatch in the number of
speech signals for the single-speech enhancement task.

VI. CONCLUDING REMARKS
This paper proposed a new multi-channel SE method,
DiffCBF, simultaneously performing denoising, dereverbera-

3Sound examples from this paper’s experiments can be found at https:
/Iwww.kecl.ntt.co.jp/icl/signal/nakatani/demos/eusipco2025/demo.html.
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tion, and source separation. It combines a diffusion model-
based method, ms-SGMSE, with a signal processing-based
method, CBF, to achieve highly accurate SE. Experimental
results demonstrated that DiffCBF effectively recovered clean
speech from noisy and reverberant mixtures, significantly
outperforming the conventional diffusion model-based source
separation method, DiffSep. Additionally, DiffCBF was shown
to work effectively even when the number of speech sources
in the captured signals differed from that in the training data.
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