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Abstract—Blind source separation (BSS) can be used to re-
cover speech signals from mixtures recorded by microphones.
However, their performances show significant limitations because
of the deviations between the instantaneous mixing model and
real audio mixtures transformed into the short-time Fourier
domain (STFT). This paper presents a data-driven preprocessing
technique called mixture warping, which aims to adjust the
mixture to obey the instantaneous model as much as possible.
As a proof of concept, we demonstrate its effect on a set of
reverberant mixtures of two speakers. Warping implemented
through a deep neural network is trained to estimate mixtures
ideally modified towards the instantaneous model in the least-
squares sense. By applying it as a preprocessing stage, it boosts
the BSS performance by up to 6.4 dB of signal-to-interference
(SIR) and 4.7 dB of signal-to-distortion (SDR) on average without
requiring any modification to the BSS methods.

I. INTRODUCTION

Speech originating in a real-world environment is often

measured along with unwanted noises and competing utter-

ances. One way to remove the unwanted components is the ap-

plication of separation or extraction techniques. Separation [1]

attempts to estimate each active sound source, while extraction

aims to recover one target source only [2]. This work addresses

methods using multiple microphones.

There are two significant branches of separation and extrac-

tion. Data-driven techniques [3]–[6] exploit a large amount

of training data and achieve high separation quality, provided

that this data closely match the considered scenario. Model-

based methods [1], [7] are based on physical and information-

theoretical assumptions about the input mixtures and, where

possible, usage of reference information. Newly emerging

hybrid methods [4], [8] aim to combine the complementary

strengths of data and model-based approaches.

This work is focused on the use of blind methods

(BSS/BSE) [7], [9]–[12], which are model-based techniques

that require minimum prior knowledge and no training data.

In particular, Independent Component Analysis (ICA) [13]

and Independent Component Extraction (ICE) [14], as well as

their extensions to vector components IVA [15] and IVE [14],

assume only linearity of mixtures and statistical independence

of original sources. Due to the low requirements, their ap-

plicability is far-reaching. However, significant performance

limitations occur if the mixing models do not sufficiently

match reality.

The most widely used BSS/BSE methods assume the de-

termined instantaneous mixing model where the number of

original sources corresponds to the number of inputs [13].

However, the real-world recorded audio mixtures are con-

volutive due to the finite speed of sound propagation and

reverberation [16]. To enable IVA/IVE processing, the short-

term Fourier transform (STFT) is applied. Each frequency

band is then processed assuming the instantaneous model,

and the bands are processed jointly through IVA/IVE [15].

In other words, convolution is approximated by multiplication

in the frequency domain, which has been referred to as the

multiplicative transfer function (MTF) approximation [17].

This MTF model is accurate when the acoustic paths

between sources and microphones are short enough and the

targeted speakers behave like point sources. However, these

assumptions often do not match the real acoustic environment,

where the reverberation time is long, and the speaker is usually

slightly moving. These effects cause the instantaneous model

to capture the reality insufficiently [16]. With data precisely

obeying the mixing model, blind methods can achieve strong

interference suppression, e.g., by 20 or even 30 dB; see, e.g.,

[18]. They also show the equivariance property, meaning their

accuracy does not depend on mixing parameters [19]. How-

ever, they do not show such strong capabilities on real audio

mixtures, which leaves significant room for improvement.

The convolutive transfer function (CTF) mixing model [17]

has been proposed as the remedy for the inaccuracy caused

by MTF. It allows long RIRs to be approximated within short

STFT frames. In the context of BSS/BSE [20], [21], it is

assumed that the past frames of the source signals (corre-

sponding to the reverberant part of the RIR) are additional

sources. However, this approach increases the complexity and

brings additional uncertainties.

In this paper, we explore a novel data-driven approach

that addresses the problem of deviations of real audio mix-

tures from the instantaneous model in the STFT domain, an

approach that we refer to as mixture warping. The method

transforms the multi-channel STFT spectrogram to adhere

to the instantaneous mixing in the least square sense. It is

implemented through a neural network trained in a supervised

manner using artificially augmented acoustic mixtures. We

demonstrate the efficiency of this concept by applying it to

highly reverberant mixtures of two speakers. The results are

promising in that the mixture warping can significantly boost

the performance of BSS/BSE without interfering with these

methods and increasing their computational complexity.
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II. PROBLEM DESCRIPTION

The multi-channel mixture of D static point sources in a

reverberant environment can be described in the time domain

by the convolutional mixing model

xm(n) =
D
∑

d=1

{am,d ∗ sd}(n), (1)

where xm(n) denotes the mth channel of the mixture, m =
1 . . .M , sd represent the dth acoustic source, d = 1 . . . D,

and am,d is the room impulse response (RIR) between the

mth sensor and dth source. The signals transformed by the

STFT are often approximated by the instantaneous model

x(k, ℓ) = A(k)s(k, ℓ), (2)

where k = 1 . . .K is the frequency index, ℓ = 1 . . . L is the

frame index, x denotes the M×1 vector of the mixed signals,

s is the D × 1 vector of all sources, and A is the M × D

mixing matrix whose elements corresponds to the MTFs. The

determined model corresponds to the assumption that D = M ,

which makes A square and invertible.

The MTF approximation is justified for a sufficiently long

analysis frame, where the length of the STFT window is signif-

icantly longer compared to the lengths of the RIRs am,d. If this

requirement is not met, (2) is not sufficiently accurate, which

deteriorates the BSS/BSE performance. Unfortunately, typical

RIRs can have thousands of taps, even in mildly reverberated

rooms. The effective length of a RIR also significantly grows

with the source-microphone distance. Given how effective BSS

methods can be if (2) is sufficiently accurate and how they

lose performance if the opposite is true, we are motivated to

find a transformation that would be capable of correcting the

inaccuracy in (2).

III. MIXTURE WARPING

For the sake of simplicity, let us first consider a mixture of

two sources recorded by two microphones. Then, (2) can be

rewritten as

x1(k, ℓ) =s11(k, ℓ) + s12(k, ℓ), (3)

x2(k, ℓ) =H1(k) · s
1
1(k, ℓ) +H2(k) · s

1
2(k, ℓ), (4)

where s11(k, ℓ) = A1,1(k)s1(k, ℓ) and s12(k, ℓ) =
A1,2(k)s2(k, ℓ) are the images of the first/second source on

the first microphone, H1(k) =
A2,1(k)
A1,1(k)

and H2(k) =
A2,2(k)
A1,2(k)

are relative transfer functions between source images recorded

on the first (reference) and second microphone, respectively,

and Ai,j(k) denotes the ijth element of A(k).
The inaccuracies of the instantaneous model (2) can be

interpreted as implying that while (3) is true, (4) is inaccurate.

We therefore propose to substitute x2(k, ℓ) by

y2(k, ℓ) = G1(k) · s
1
1(k, ℓ) +G2(k) · s

1
2(k, ℓ), (5)

where G1(k) and G2(k) are the solutions of

argmin
G1(k),G2(k)

∥x2(k, ℓ)−G1(k) · s
1
1(k, ℓ)−G2(k) · s

1
2(k, ℓ))∥2.

(6)

We call the transformation from x(k, ℓ) =
( x1(k,ℓ)
x2(k,ℓ)

)

to

x̃(k, ℓ) =
( x1(k,ℓ)
y2(k,ℓ)

)

as mixture warping. The ideally trans-

formed mixture x̃(k, ℓ) is similar to the original one, while

it perfectly obeys the instantaneous mixing model, which

satisfies our goal. However, the ideal transformation is a

function of the true source images s11(k, ℓ) and s12(k, ℓ), which

we aim to separate/extract. Our strategy is to approximate

the transformation by a deep neural network and train it to

estimate y2(k, ℓ) given the input x1(k, ℓ) and x2(k, ℓ), with

the training target y2(k, ℓ) computed according to (5),(6). The

approach can be extended to any number of microphones by

applying the transform to each pair of signals x1(k, ℓ) and

xm(k, ℓ), m = 2 . . .M .

A. The warping network

The proposed warping network is a variant of U-net [22]

depicted in Fig. 1. We use complex-valued parameters; the

network is implemented in Pytorch with partial support of the

ComplexNN toolbox [23].

The input consists of 19 frames (about 600 ms) of two-

channel input mixture, i.e., the reference channel x1(k, ℓ) and

the to-be warped channel x2(k, ℓ). The context is non-causal,

containing 9 frames before and 9 frames after the current

frame. Our preliminary experiments found advantageous to

input frames with two frequency resolutions: here K1 = 1024
and K2 = 4096 bins. The K1 corresponds to the desired output

resolution. The motivation for inclusion of K2 is that the MTF

approximation becomes more accurate with a longer frame and

the network is expected to learn from this information.

Most of the benefits of mixture warping remain when

applied only in the frequency bins, which concentrate most

of the signal power. This significantly reduces the number

of trainable parameters and, consequently, the training time.

To demonstrate this, we present two variants of the warping

network: 1) The full-band variant (FB) depicted in Fig. 1,

where the warping is applied to the complete frequency range

for both input frequency resolutions. The FB variant requires

2.1 millions of trainable parameters. 2) The sub-band variant

(SB) optimized for speech signals, where the warping is

applied only to frequencies 0 . . . 2000 Hz, i.e., to bins 0 . . . 128
for resolution K1 and 0 . . . 512 for resolution K2. The SB

variant requires 831 thousands of trainable parameters. For

the SB variant, the number of frequency bins (dimension 1 of

tensors in Fig. 1) is reduced by 4.

The first block of layers realizes the merging of the two

input frequency resolutions. The features of the larger one

are two times sub-sampled by a convolutional layer with

frequency stride 2. Moreover, the time-context is consecutively

reduced by omitting zero-padding in the frame dimension of

the convolutional kernel. At the output of this block, the two

sets of feature maps are concatenated and have time-context

equal to 1.

The following block of layers represents the encoder part of

the network. Two types of layers alternate here: a sub-sampling

layer that reduces the frequency resolution via kernel stride 2
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Fig. 1. Warping network architecture (the full-band variant): Each arrow represents a layer or an operation, each rectangle indicates the resulting dimensions
of the data (frequency resolution × number of frames × number of feature maps). All data concatenations perform a merging of feature maps from different
network branches. For the sub-band variant, the first dimension of the data, corresponding to the frequency range, is always four times smaller.

and a classical convolutional layer. The frequency resolution

is reduced four times.

The subsequent layers implement decoding. The frequency

resolution is consecutively increased back to the original

size via transposed convolution with the stride of two. The

encoder and the decoder layers are interconnected with skip

connections containing the convolutional layer, as suggested

in [24]. This prevents the concatenation of semantically dif-

ferent features between the encoder and decoder.

The final block of layers performs the regression using

the features computed by the decoder. The network output

estimates the warped frame y2(k, ℓ), obtained by a fully

connected layer without a nonlinearity.

All convolutional layers in the network are followed by

batch normalization (BN) and ReLU nonlinearity. A skip

connection using the input frame is concatenated with the

feature maps at the output of the resolution merging block

and the decoder. The network is trained by minimization of

the mean square error loss function.

B. Dataset

The training of the network and the experimental evaluation

are performed using reverberated mixtures of two speakers

originating in the multi-channel Wall Street Journal dataset

(MC-WSJ0-2mix [25], [26]). These are spatialized versions

of the single-channel dataset described in [27]. The dataset

contains 20, 000 training, 5000 validation, and 3, 000 test

mixtures simulated in a reverberant environment using a mi-

crophone array containing eight microphones; our experiments

utilize the first two or four microphones. The sources are

mixed at SIR between ⟨−5,+5⟩ dB. The recordings are highly

reverberant (T60 ∈ ⟨200, 600⟩ ms) and captured in rooms with

variable dimensions. The geometry of the microphone array is

varying, as well as the source-microphone distance, which is

1.3 m with 0.4 m standard deviation. The sampling frequency

is 16 kHz.

True source components are available for the training mix-

tures. Using these, the ideal warped mixtures are computed

using equations (5) and (6) and used to train the warping

network. The first channel of WSJ0-2mix serves as the ref-

erence channel x1(k, ℓ). Other channels are used as x2(k, ℓ),
i.e., one four-channel recording produces three warped two-

channel mixtures. In this way, 3× 20, 000 = 60, 000 training

mixtures are created.

IV. EXPERIMENTS

The mixture warping can improve the performance of

either blind source separation (BSS) or blind source extraction

(BSE). To demonstrate both, we present results achieved by

AuxIVA (Auxiliary function Independent Vector Analysis,

[9]), which is a BSS algorithm, and AuxIVE (Auxiliary

function Independent Vector Extraction [28]), a BSE algo-

rithm. Both algorithms run for 200 iterations per mixture.

AuxIVE requires guidance to extract the target speaker through

external information; we utilize embedding features encoding

the speaker’s characteristics. The embeddings are computed

using a pre-trained neural network; our implementation uses

the feed-forward sequential memory network (FSMN, [29]);

details are provided in [30].

Three variants of the test mixtures in the time-frequency

domain (with STFT frame length of 1024 and the shift of

512 samples) are processed. 1) Original mixture contains

unmodified channels xi(k, ℓ), i = 1 . . . 4. 2) Ideal mixture

is computed by (5) and contains x1(k, ℓ) and ideally warped

y2(k, ℓ). 3) Warped mixture contains x1(k, ℓ) and one or three

additional channels estimated by the warping network, either

by the full-band (FB) or the sub-band (SB) variant. Note that

the ideal warping is applicable only for the two microphone

settings because the mixtures contain only two sources. With

a larger number of microphones, the ideally warped mixtures

would be rank deficient (overdetermined), which is an artificial

situation that does not occur in practice.
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The experiments are evaluated using the BSS EVAL tool-

box [31]. The presented measures are SIR, which quantifies

suppression of the unwanted sources, and SDR, which mea-

sures both the suppression and the distortion of the desired

source. Table I1 summarizes the results achieved by AuxIVA

(separation) and AuxIVE (extraction) under various settings.

A. Separation by AuxIVA

For 2 input channels, the performance on mixtures pre-

processed with the FB warping is improved by 5.5 dB SIR

and 3.8 dB SDR on average compared to that achieved on

the original mixtures. Detailed distributions of the results are

presented in Fig. 2 where the results obtained on the warped

mixtures are distinctly shifted towards higher values for both

SIR and SDR. With 4 microphones, the FB warping is even

more beneficial than with 2 microphones, bringing 6.4 dB SIR

and 4.7 dB SDR improvements on average by AuxIVA.

When comparing the SB and FB warping variants, the SB

warping yields lower results by up to 1dB in both observed

metrics. Therefore, the sub-band variant appears to be an eco-

nomical alternative to FB, as its slight performance loss results

in a 60% reduction of the network’s number of parameters.

The results achieved with the ideal mixtures show a sig-

nificant improvement of 17.9 dB SIR and 16.7 dB SDR on

average compared to the original mixtures. This points to the

large potential for warping and considerable room for further

improvements.

B. Extraction by AuxIVE

Similarly to separation, warping appears to be beneficial

as it improves SIR and SDR by 5.2 dB SIR and 3.8 dB

SDR, on average, compared to the performance achieved with

original mixtures. With 4 microphones, warping improves the

extraction accuracy only by 0.9 dB SIR and 1.0 SDR.

Overall, the extraction by AuxIVE shows slightly lower

performance than the separation by AuxIVA. There are two

explanations for this. First, extraction fails when a source

different from the target speaker is extracted. This does

not happen in case of separation because the correct output

channel containing the target speaker is selected automatically.

Second, the significant difference in results with 4 micro-

phones is because AuxIVE does not implement dimension

reduction, while AuxIVA does. Dimension reduction may be

necessary for our experiments precisely because the mixtures

contain only 2 speakers, which may be even more important

for warped mixtures than for the original mixtures. Answering

these questions requires further testing, where AuxIVE will

also be implemented with dimension reduction.

When the extraction accuracies of the SB and FB warping

applied to 2 microphones are compared, the SB warping

achieves results lower by up to 2 dB SIR and 1.3 dB SDR.

Therefore, the computationally less demanding SB variant still

represents an effective alternative to FB as a way to improve

BSE performance.

1Different values of SIR/SDR were presented for AuxIVE in [30] when
applied to WSJ0-2mix dataset. The difference is caused by a different input
sampling frequency; the 16 kHz version of the dataset is processed here.

TABLE I
MC-WSJ0-2MIX: SIR/SDR [DB] AVERAGED OVER ALL 3000

SEPARATION (OR 6000 EXTRACTION) EXPERIMENTS USING 2 OR 4

MICROPHONES.

Task Mic. # Mixture
SIR
[dB]

SDR
[dB]

- - Original 0.1 0.1

Separation

2 Original 8.0 3.8
2 Warped(SB) 12.8 7.3
2 Warped(FB) 13.5 7.6
2 Ideal 25.9 20.5
4 Original 9.5 4.7
4 Warped(SB) 15.0 8.8
4 Warped(FB) 15.9 9.4
4 Ideal N/A N/A

Extraction

2 Original 4.4 1.6
2 Warped(SB) 7.6 4.1
2 Warped(FB) 9.6 5.4
2 Ideal 16.3 11.7
4 Original 10.0 3.2
4 Warped(SB) 10.3 3.8
4 Warped(FB) 10.9 4.2
4 Ideal N/A N/A
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Fig. 2. MC-WSJ0-2mix: Separation using 2 channels - Histograms of SIR
and SDR values achieved on mixtures with/without the FB warping.

V. CONCLUSION

A data-driven preprocessing for BSS in the STFT domain

was proposed. The procedure is called mixture warping and

remedies deviations of audio mixtures from the instantaneous

mixing model. As a proof of concept, we apply BSS to

ideally warped reverberant mixtures of two speech sources.

The resulting performance is very high: compared to the

unmodified mixtures, it yields a performance gain of 18dB SIR

and 17dB SDR. Applying the trained warping network to the

mixtures and applying BSS yields performance gains of up to

6.4dB SIR and 4.7 SDR, demonstrating the effectiveness of the

approach and also pointing to room for possible improvements.

There are several open problems worth exploring in the

future. Warping should be trained and analyzed for mixtures

containing a varying number of active speakers, other sources,

and environmental noise. Also, the sequence of warping+BSS

should be compared to end-to-end data-driven systems in terms

of data requirements, performance, and robustness to training-

test mismatch (off-domain test data). Results show that a small

network is sufficient to perform successful warping, which

may indicate less data/computationally demanding training of

warping. The presence of BSS has the potential to be less

vulnerable to mismatching training-test conditions.
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