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Abstract—In this study, we propose an unsupervised domain
adaptation method for multi-channel acoustic scene classifica-
tion (ASC). Multi-channel ASC leverages spatial features and
provides advantages to distinguish scenes with similar spectral
features. Meanwhile, it is sensitive to the mismatch of the
spatial features due to the difference in the microphone array
position. One promising way to mitigate the mismatch is domain
adaptation. In ASC, existing studies have mainly focused on
unsupervised domain adaptation for single-channel scenarios and
compensated for the domain mismatch in the spectral features. In
this paper, we explore unsupervised domain adaptation methods
for multi-channel ASC. A straightforward approach is to perform
unsupervised domain adaptation only with the spatial features.
This approach, however, results in limited performance because it
is not easy to align the spatial features of the source and target
domains per acoustic scene after changing the array position
dynamically. To mitigate this issue, we adapt the spatial features
along with frozen spectral features. The spectral features are
relatively invariant to the microphone positions and are expected
to help associate the spatial features across different domains.
In the evaluation experiments, we confirmed that our method
mitigates performance degradation.

Index Terms—Acoustic scene classification, unsupervised do-
main adaptation, domain adversarial training, spatial feature

I. INTRODUCTION

Monitoring domestic activities is essential to enhance inhab-
itants’ safety and quality of life. For example, there are many
applications, such as monitoring older people and infants [1],
[2], surveillance systems [3], [4], and life-logging systems [5].
In monitoring domestic activities, acoustic scene classification
(ASC) is an important technology and has been studied [6].
ASC is the technology that classifies an audio recording
to a predefined class label (e.g., “Cooking” and “Watching
TV”). Many studies have utilized spectral features, such as
log-Mel spectrograms and Mel-frequency cepstral coefficients
(MFCCs) [7]-[11].

In multi-channel cases, spatial information is available and
helpful in ASC [12], [13]. For instance, considering the clas-
sification using only spectral features between a TV talk show
and everyday conversation, it should be challenging because
both scenes contain speech. On the other hand, utilizing spatial
features may facilitate their distinction based on the positions
of sound sources. Spatial features, such as time differences
and power ratios between microphone recordings, have been
employed in acoustic scene analysis [14].
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Fig. 1. Behavior of spectral and spatial features in recordings from different
microphone array positions.

One of the spatial features is a generalized cross-correlation
phase transform (GCC-PHAT) [15]. GCC-PHAT is widely
used to estimate the time difference of arrival (TDOA). It
can be computed regardless of the number of sound sources,
source movement, microphone positions, or microphone array
geometry. GCC-PHAT is utilized in ASC and sound event
detection (SED) [12], [13], [16]-[19].

When monitoring domestic activities, the microphone ar-
ray’s position should be flexible to account for cases where
users move the microphone array. However, if an ASC
model is trained using a microphone array at a particular
position, a microphone array located in a different position
will represent an unknown environment for the trained ASC
model. Figure 1 illustrates the behavior of features in different
positions. Compared to spectral features, spatial information is
expected to change significantly based on the orientation and
position of the microphone array. This difference could lead to
ASC performance degradation. From a practical perspective,
collecting labeled data and retraining the model every time the
microphone array’s position changes is costly and unrealistic.

In this study, we explore domain adversarial training (DAT)
as unsupervised domain adaptation for multi-channel ASC
when microphone positions differ between training and eval-
uation. A straightforward approach is to perform DAT only
with the spatial features. This approach, however, results in
limited performance because it is not easy to align the spatial
features for each acoustic scene when the array positions of
the source and target domains differ. To mitigate this issue, we
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adapt the spatial features along with frozen spectral features.
The spectral features are relatively invariant to the microphone
positions and are expected to help associate the spatial features
across different domains. In the evaluation experiment, we
confirmed that the proposed method mitigates performance
degradation.

II. RELATED WORK

Domain adaptation has been widely researched in the field
of ASC [20]-[24]. For example, there are studies on ASC
that adapt to different devices [20]-[22], adapt to different
cities [20]-[22], and simultaneously adapt to both factors [24].
These studies apply domain adaptation techniques to spectral
features. A widely used approach in domain adaptation is DAT,
where a domain classifier is trained to distinguish source and
target domains, and feature extractors are adversarially trained
to extract domain-invariant features. This method improves
robustness to differences between domains.

In multi-channel settings, spatial features can be effec-
tive. For instance, sound event localization and detection
(SELD) and direction of arrival (DOA) estimation utilize
spatial features. He et al. have applied domain adaptation for
the real and imaginary parts of multi-channel spectrograms
in DOA estimation [25]. Yasuda et al. have proposed an
adaptation method for spectral and spatial features, using
echo information as additional information for adaptation to
unknown environments in SELD [26]. In these studies, domain
adaptation techniques have been applied to spatial information.

III. METHOD
A. Task Specification

This study aims to conduct unsupervised domain adaptation
for multi-channel ASC where a microphone array’s position
differs from the one used during training. We assume that
the microphone array position changes within the same room.
Here, we refer to the microphone array used during training
as the source domain and the microphone array at different
positions from the source domain as the target domain. We
consider an ASC model that integrates spectral and spatial fea-
tures (see Fig. 2). The spectral feature m; and spatial feature
g; are processed by feature extractors M and G, respectively.
These extracted embeddings are then concatenated and input
to classifier C.

Spatial features g; have been shown to be effective in
ASC and SED [12], [16]-[19]. However, spatial characteristics
might vary depending on the microphone array’s position (see
Fig. 1). For example, when the orientation or position of
the microphone array changes, the spatial information, such
as the direction of the sound source, also changes. Due to
these feature differences, the feature extractor trained in the
source domain may not work adequately in the target domain,
resulting in performance degradation.

To address this issue, we apply DAT as unsupervised domain
adaptation. In the source domain, we train the ASC model
to enhance classification performance (see Sec. III-B). Then,
we apply DAT to the feature extractors for the target domain
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Fig. 2. Overview of the classification network. Feature extractors consist of
either parameters trained in the source domain or updated through DAT.

(see Sec. III-C). Hereafter, the source domain is represented
as S = {(x;,yi)|z; € Xg,y; € Ys,i =1,2,...,n5}, and the
target domain as T' = {(z;)|z; € Xr,j =1,2,...,n7}. Here,
X4 and Yy (d € {S,T}) denote the sets of audio clips and
scene labels, respectively.

B. Pre-training on Source Domain

We train the ASC model using a two-step approach [13].
In the first step, we train the feature extractors M and G
for spectral and spatial features, respectively. Because these
two types of features have different characteristics, we in-
dependently train the corresponding classification networks.
This independent training is expected to enable each feature
extractor to learn embeddings that are effective for ASC. We
train the feature extractors and classifiers by minimizing the
following cross-entropy losses:

1 ns K
Lo = = D> Mpmy 0g(Cra(M(m))), (1)

=1 k=1

ns K
»Cgcc = _% Z Z ]]-[k:y,;} IOg(Cgcc(g(gi)))a )
i=1 k=1
where K is the number of classes, and 1(;—,,; is the indicator
function that equals 1 if £ = y; and O otherwise.

In the second step, we integrate spectral and spatial features
by concatenating the embeddings processed by the feature
extractors (see Fig. 2). Then, the classifier C is trained to
improve classification performance while freezing the trained
feature extractors.

ns K
r— S Z Z 1jj—y,] log(C(concat(M(m;),G(g:)))),

S i1 k=1
3)

where concat(-,-) indicates the concatenation function. We
train only C to minimize the above equation.

C. Unsupervised Domain Adaptation to Target Domain

We apply DAT for an array position that differs from the ar-
ray position of the source domain. We train a domain classifier
‘H that distinguishes the embeddings obtained from the source
(S) and target domains (7). In contrast, the feature extractors
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Fig. 3. SINS database [10]. Red arrows indicate 4-channel microphone arrays.

TABLE I
SPLIT SETTINGS FOR TRAINING AND EVALUATION DATA.

| type domain | audio label | hours
(a) | train source v v 54.1h
(b) | train target v - 23.1h
(c) | valid  source v v 19.3h
(d) test target v v 27.1h

are trained adversarially to trick the domain classifier, resulting
in the extraction of domain-invariant features. In this study, we
input the embedding fi(d) (d € {S,T}) to the domain classifier
H. Here, fi(d) is represented as follows:

M ()

AP =169 (g)
concat (M@ (m

(only spectral features)
(only spatial features)
),G@(g;))  (both features)
“4)

In this study, the domain classifier H is trained using the
loss function defined as follows:
H(T)).

JR
Liisc = _Tli Z log('H Z log
S =1
(5)

Here, fi(s) and f,i(T) indicate the embeddings of the source and
target domains, respectively. We update the feature extractors
M) and/or G(T) in DAT. The feature extractors are trained
using the loss function defined as follows:

Lteat —_ - Z 10g

This loss function decreases when an embedding from the
target domain is misclassified as belonging to the source do-
main. The domain classifier and feature extractors are updated
alternatively.

In the target domain, the ASC model consists of feature
extractors adapted using DAT and a classifier trained in the
source domain.

H(F)). 6)

IV. EVALUATION EXPERIMENTS
A. Setup

We evaluated the proposed method using the SINS
database [10]. The SINS database is a continuous recording
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Fig. 4. Average Fl-score with an increasing amount of target domain data.

TABLE II
MACRO F1-SCORE OF THE TARGET OF DOMAIN ADAPTATION. THE
F1-SCORE IS EVALUATED ON A NETWORK (SEE FIG. 2). “ADAP.”
INDICATES THE TARGET FEATURE EXTRACTORS OF DOMAIN ADAPTATION.
fi IS THE INPUT OF THE DOMAIN CLASSIFIER. (3 IS THE RESULT WHERE
DOMAIN ADAPTATION IS FIRST APPLIED TO ONLY SPECTRAL FEATURE,
THEN USED TO ADAPT SPATIAL FEATURES.

| Train | Adap. fi | Average
® | source | - - | 71.5%
@ | source g g 72.6%
3 | source g M, G 73.3%
@ | source | M, G M, G NaN
® | source /\g/l MM g 76.0%
® | target | - -] 825%

of one week of a person’s activities collected by a network
of 13 microphone arrays (see Fig. 3). Each microphone array
consists of four omnidirectional microphones arranged in a
linear shape. Here, microphone array 5 is not available due to
random crashes/missing data. In this experiment, we trained
the ASC model using recordings from subarray 1 located
in a corner of the living room. Then, we evaluated domain
adaptation on microphone arrays 4 and 8, located in the other
corners of the room.

We divided the continuous audio recording into 10 s audio
clips sampled at 16 kHz. From this dataset, we used audio
clips including ten daily domestic activities: “Absence,” “Call-
ing,” “Cooking,” “Dishwashing,” “Eating,” “Other,” “Vacuum
cleaner,” “Visit,” “Watching TV,” and “Working.” We ran-
domly split the dataset, as shown in Table 1. In Table I, (a)
and (c) consist of audio and labeled data, while (b) consists
only of audio data.

We processed the audio clips to obtain spectral and spatial
features at the same setting as [12]. The 40-dimension log-
Mel spectrogram was calculated for each 64 ms time frame
with a 20 ms overlap. The GCC-PHAT was calculated for each
128 ms time frame with a 50% overlap for each microphone
pair. We used a log-Mel spectrogram calculated from the first
channel of the subarray and three GCC-PHATS calculated
with the reference channel fixed (microphone 1-2, 1-3, 1-
4). The log-Mel spectrogram was a two-dimensional tensor
of shape 40 x 501 (Freq x Frame). GCC-PHATs from three
microphone pairs, each represented as a 2048-dimensional
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TABLE III
AVERAGE F1-SCORE FOR EACH LABEL WITH ARRAY 4 AND 8. THE LEFT FOUR COLUMNS, MIDDLE TWO COLUMNS, AND RIGHT FOUR COLUMNS
INDICATE CASES WHERE MEL+GCC WITHOUT DAT IS HIGHER BY MORE THAN 1PT, WITHIN 1PT, AND LOWER BY MORE THAN 1PT COMPARED TO MEL
WITHOUT DAT, RESPECTIVELY. MEL+GCC WITH DAT CORRESPONDS TO () IN TABLE II.

Feature Train. | Adap. Vacuuljrll-Score Dish Watch.
Absence Other Working Eating cleaner  Visit Calling  Cooking washing TV ‘ ‘ Ave.
Mel source - 77.8% 21.7% 37.3% 33.2% 99.2% 77.7% 88.8% 93.7% 63.6% 99.4% 69.2%
Mel+GCC  source - 81.1% 25.7% 42.3% 56.5% 99.1% 78.5% 83.5% 88.2% 61.7% 98.3% 71.5%
Mel source v 88.0% 21.0% 54.9% 84.5% 82.6% 77.3% 86.1% 95.3% 62.7% 99.4% 752%
Mel+GCC  source v 87.4% 15.4% 44.3% 86.9% 96.9% 79.7% 85.0% 95.7% 69.1% 99.4% 76.0%
Mel target - 80.5% 32.5% 64.2% 86.3% 98.7% 80.9% 89.8% 97.8% 84.9% 99.7% 81.5%
Mel+GCC  target - 80.5% 30.2% 66.6% 87.8% 98.7% 84.0% 90.7% 98.3% 88.9% 99.7% 82.5%

vector, were concatenated into a single 6144-dimensional
vector. The log-Mel spectrogram and GCC-PHATs were fed
into a convolutional neural network M based on [7] and
a fully connected network G, respectively, each extracting
a 256-dimensional embedding. The classifiers Cpe and Cycc
each received a 256-dimensional embedding as input, while C
received a 512-dimensional embedding.

For pre-training in the source domain, we used datasets (a)
and (c). The networks were trained for 50 epochs using the
AdamW optimizer [27], with the learning rate of 1.0 x 10~*
and weight decay of 1.0x10~5. To mitigate the data imbalance
problem, we sampled audio clips for each scene label equally.

For DAT, we used datasets (a) and (b). The networks were
trained for 200 epochs using the AdamW optimizer. For
adaptation using only spectral features, the learning rates of
the feature extractor and domain classifier were 1.0 x 10~
and 1.0 x 1075, respectively. For other conditions, the learning
rates of the feature extractor and domain classifier were both
set to 1.0 x 10~°. The weight decay was set to 1.0 x 1075,
As the evaluation metric, we averaged the F1-score calculated
for each scene label separately.

B. Results

1) Comparison of the Amount of Target Domain Data:
First, we investigated the relationship between the amount
of target domain data and the macro Fl-scores. Figure 4
shows the macro Fl-score for changes in the amount of the
target domain data. The Fl-score without DAT (0 h) was
71.5%. In contrast, we confirmed an improvement in the F1-
score through DAT. Especially with 2.9 hours of the target
domain data, the Fl-score improvement was 2.5%. However,
no further improvement in the Fl-score was observed with
additional target domain data. One possible reason why no
additional improvement was observed is that loss functions
(5) and (6) were designed for domain classification rather than
scene classification. In addition, when the target domain data
was increased beyond 2.9 hours, the proportion of several
classes that accounted for less than 5 percent of the data
decreased incidentally. As a result, the Fl-scores for these
classes declined, and the overall performance did not improve.

2) Comparison of Domain Adaptation Targets: We com-
pared the feature extractors to which domain adaptation was
applied (“Adap.”) and the input to the domain classifier (f;).
We evaluated the ASC model that utilizes spectral and spatial

features (see Fig. 2). Table II shows the average F1-scores for
the feature extractors used in domain adaptation and the input
fi of the domain classifier. Here, (1) indicates the result without
domain adaptation, where the lowest performance is expected.
In contrast, (6) indicates the result of training on the target
domain data, where the highest performance is expected. First,
we compared the DAT results for G using only spatial features
(@) and incorporating spectral features ((3)). The experimental
results show that (3) achieves a 0.7% higher F1-score than (2),
suggesting that including spectral features in f; is beneficial
for domain adaptation of G.

Next, we investigated domain adaptation, which includes the
spectral feature extractor. We compared the results by adapting
both the spectral and spatial feature extractors simultaneously
(@), and first adapting the spectral feature, followed by using
it to adapt the spatial features ((5)). The experimental results
indicated that (5) achieved the highest Fl-score. In contrast,
for (@), the Fl-score could not be calculated because the
ASC model could not output some labels. This suggests
that freezing the spectral feature extractor while adapting the
spatial feature extractor was effective. It was considered that
spectral information was relatively stable because microphone
recordings contained similar sounds. In the following section,
we used the results of (5) as the Mel+GCC results obtained
after DAT.

3) Overall Performance of Domain Adaptation: We com-
pared the classification performance of models trained i)
without DAT, ii) with DAT, and iii) on the target domain data.
We also compared the results of Mel and Mel+GCC.

Table III shows the overall Fl-scores for each label. The
experimental results confirmed that the average Fl-score of
Mel+GCC was higher than that of Mel when domain adap-
tation was not applied. Examining the Fl-scores for each
label reveals that Mel+GCC outperformed Mel for labels
such as “Absence,” “Other,” “Working,” and “Eating” (left
four columns). The labels “Other” and “Working” have been
reported to contain many silent intervals, as described in [10].
On the other hand, the F1-scores of Mel+GCC for “Calling,”
“Cooking,” “Dishwashing” and “Watching TV” were lower
than those of Mel (right four columns). These labels were con-
sidered to be associated with spatial information that changes
due to different array positions, leading to performance degra-
dation. To apply DAT, we confirmed that the average F1-
score with DAT was higher than that without it. These results
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indicate that the proposed method mitigates domain mismatch.

We also confirmed that in methods (2), 3), and () in
Table II, the F1-score of Mel+GCC with DAT was lower than
that of Mel with DAT alone, which indicates the difficulty of
adapting spatial features. However, our proposed method ((5)),
which first adapts the spectral feature and then uses it to guide
the adaptation of spatial features, successfully addressed this
challenge and achieved F1-score 0.8pt higher than that of Mel
with DAT.

V. CONCLUSION

In this study, we explore unsupervised domain adaptation
for multi-channel ASC. We address the problem where the
microphone array position differs between the training and
evaluation. We apply DAT to the feature extractors for spec-
tral and spatial features. In the evaluation experiments, we
demonstrated the effectiveness of DAT when using a different
microphone array for training and evaluation in the same room.
We also compared the target feature extractors for DAT. We
confirmed the highest F1-score when first adapting the spectral
feature and then using it to adapt the spatial features. For future
work, we plan to incorporate powerful pre-trained models [28]
instead of using the log-Mel spectrogram.
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