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Abstract—Channel charting has emerged as a powerful tool for
user equipment localization and wireless environment sensing. Its
efficacy lies in mapping high-dimensional channel data into low-
dimensional features that preserve the relative similarities of the
original data. However, existing channel charting methods are
largely developed using simulated or indoor measurements, often
assuming clean and complete channel data across all frequency
bands. In contrast, real-world channels collected from base sta-
tions are typically incomplete due to frequency hopping and are
significantly noisy, particularly at cell edges. These challenging
conditions greatly degrade the performance of current methods.
To address this, we propose a deep tensor learning method
that leverages the inherent tensor structure of wireless channels
to effectively extract informative while low-dimensional features
(i.e., channel charts) from noisy and incomplete measurements.
Experimental results demonstrate the reliability and effectiveness
of the proposed approach in these challenging scenarios.

Index Terms—Channel charting, noisy and incomplete channel,
tensor decomposition , deep learning

I. INTRODUCTION

Modern wireless systems are expected to support denser
user equipments (UEs), larger antenna arrays, and an increased
number of subcarriers [1]. These trends lead to growing
volumes of high-dimensional channel data collected at base
stations (BSs), creating new opportunities for intelligent data-
driven learning methods to extract knowledge from these
large datasets and redefine the potential of wireless sensing,
localization, and communication.

To this end, an emerging technique called channel chart-
ing [2]–[5]maps high-dimensional channel data into low-
dimensional representations (also known as pseudo-positions)
that preserve the relative similarities of the original data.
With a properly designed similarity measure, the resulting
low-dimensional channel chart can provide valuable insights
into the radio environment, such as user positions/trajectories
within a region, and the clustering properties of channels,
facilitating various downstream tasks [6], [7].

Earlier works in channel charting primarily rely on classi-
cal manifold learning algorithms, such as Multidimensional
Scaling (MDS) [8] and t-Distributed Stochastic Neighbor
Embedding (t-SNE) [9]. However, these methods are mostly
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non-parametric, making out-of-sample extensions computa-
tionally expensive. Specifically, obtaining the low-dimensional
representations (i.e., pseudo-positions) for new channel data
requires referencing historical data [10], which is inefficient.
To address this limitation, recent approaches leverage deep
learning-based [3], [11] dimensionality reduction techniques to
learn a parametric mapping, enabling efficient out-of-sample
predictions. Among these, the most representative methods are
based on Siamese or Triplet network architectures [3], [11].
Their key idea is to train a neural network that takes channel
data as input and outputs pseudo-positions, ensuring that the
relative dissimilarities among these pseudo-positions closely
match those computed from the high-dimensional channel
data. Once trained, the neural network can rapidly generate
low-dimensional pseudo-positions for any new channel sam-
ples, enabling fast channel charting.

Despite their effectiveness, current deep learning-based
channel charting methods often overlook non-ideal factors
encountered in practical scenarios, such as noisy communi-
cation environments and incomplete channel measurements
(e.g., due to frequency hopping) [12], [13]. Additionally,
existing feature extraction techniques for channel data tend
to retain excessive information, leading to high-dimensional
feature vectors (e.g., computed via auto-correlation) [5]. As
a result, neural networks predominantly rely on Multi-Layer
Perceptrons (MLPs), significantly increasing the number of
parameters and the training burden. These challenges raise a
critical question: How can we design a neural network-based
channel charting method that is robust to noisy and incomplete
channel data while maintaining a concise model architecture
to enable fast training and inference?

To address this question, we make the first attempt to
leverage the inherent low-rank tensor structure within wireless
channel data to design a robust and efficient channel charting
network. Recent studies have shown that wireless channels in
Multiple-Input Multiple-Output Orthogonal Frequency Divi-
sion Multiplexing (MIMO-OFDM) systems can be naturally
represented using low-rank tensor decomposition models [14]–
[17]. By leveraging tensor structures, more accurate channel
estimations have been achieved while requiring fewer pilot
signals. These findings motivate us to develop a charting
network that integrates tensor decompositions and computa-
tions to mitigate the adverse effects of incomplete and noisy
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channel measurements, while reducing the number of network
parameters. Experimental results demonstrate the superior
performance of our proposed method compared to state-of-
the-art approaches.

II. PROBLEM FORMULATION AND CHALLENGES AHEAD

A. Channel Model

We consider a MIMO-OFDM system. Following [18], the
channel between the BS and the UE is modeled using the
3GPP Cluster Delay Line (CDL) model:

h(ipol, itx, irx, isc) =

L−1∑
l=0

αl,ipole
−j2πτl(isc∆f)

×ej2πfc
r̂Ttx,ld̄itx

c ej2πfc
r̂Trx,ld̄irx

c . (1)

Here, h(ipol, itx, irx, isc) denotes the channel coefficient, where
ipol, itx, irx and isc represent the polarization index, UE transmit
antenna index, BS receive antenna index, and subcarrier index,
respectively. The channel coefficient h(ipol, itx, irx, isc) can be
interpreted as the sum of the responses from L sub-paths.

In the l-th sub-path, αl,ipol is the complex gain corresponding
to the ipol-th polarization, and τl is the propagation delay. The
constants ∆f , fc, and c denote the subcarrier spacing, carrier
frequency, and speed of light, respectively.

The spherical unit vector r̂rx,l, defined by the azimuth angle
of arrival ϕl,AOA and zenith angle of arrival θl,ZOA, is:

r̂rx,l
∆
=

sinθl,ZOAcosϕl,AOA
sinθl,ZOAsinϕl,AOA

cosθl,ZOA

 . (2)

Similarly, r̂tx,l is determined by the azimuth angle of departure
ϕl,AOD and the zenith angle of departure θl,ZOD. The vectors
d̄itx and d̄irx specify the three-dimensional Cartesian coor-
dinates of the itx-th UE antenna and the irx-th BS antenna,
respectively.

Note that h(ipol, itx, irx, isc) depends on multiple indices;
therefore, it can be naturally represented as a channel ten-
sor H ∈ CNrx×Npol×Ntx×Nsub , where Nrx, Npol, Ntx, and Nsub
denote the number of BS antennas, polarization modes, UE
antennas, and subcarriers, respectively.

B. Channel Charting and Challenges Ahead

Channel charting can be expressed as a mapping function:

z(Hi) : CNrx×Npol×Ntx×Nsub → RD (3)

which projects the high-dimensional channel Hi into a
lower-dimensional pseudo-position z(Hi), where D ≪
NrxNpolNtxNsub.

The goal is to preserve the relative similarity between
channels, meaning that the distance between z(Hi) and z(Hj)
should reflect the dissimilarity dij ≜ d(Hi,Hj) in the original
space. Accordingly, channel charting can be formulated as the
optimization problem:

min
z(·)

N−1∑
i=1

N∑
j=i+1

(
dij − ∥z(Hi)− z(Hj)∥2

)2

. (4)

To address this problem, various charting algorithms have
been proposed, broadly categorized into manifold learning-
based and deep learning-based approaches [4], [5]. We focus
on the latter due to their ability to learn a parametric mapping
zθ(·), which enables efficient out-of-sample predictions, where
θ represents the neural network parameters.

A major challenge in deep learning-based methods is the
lack of direct support for complex-valued inputs in standard
frameworks (e.g., PyTorch). To address this, carefully designed
channel features are often used to encode channel properties
for training. Most existing feature representations rely on
auto-correlation [5] in the time or angular domain [2], re-
sulting in extremely high-dimensional features. Consequently,
neural networks processing these flattened features—typically
implemented as MLPs—incur a high parameter count and
significant training overhead. Furthermore, current methods
seldom account for real-world impairments such as noisy or
incomplete measurements. This limitation reduces their robust-
ness and efficiency in practical deployments, highlighting the
need for more resilient feature representations and concise
neural architectures.

III. PROPOSED APPROACH

In this section, we introduce our deep tensor learning
(DTL) framework for reliable channel charting. Similar to
existing methods, DTL begins with a feature engineering
module F (·) that transforms raw channel data H into a
more robust tensor representation F (H), mitigating real-world
impairments. A tensor Tucker decomposition-based denoising
module D(·) then further suppress noise [19]. Unlike prior
approaches relying on MLP-based dimensionality reduction,
our framework employs a tensor contraction layer [20]–[22]
operating directly on tensor-based features to produce the final
channel chart. Fig. 1 illustrates the overall architecture.

A. Part 1: Tensor Feature Engineering

The feature engineering module F (·) is crucial yet chal-
lenging in channel charting. It must strike a balance between
expressiveness and conciseness while ensuring robustness.
Retaining too much raw data increases feature dimensions and
network parameters, while overly compact features risk losing
essential channel details, degrading chart quality.

Towards these goals, we propose computing a spatial co-

variance tensor T ∈ CNrx×Nrx×
Nsub
hp for each channel tensor

H, as illustrated in Part 1 of Fig. 1. Concretely, to mitigate
the impact of incomplete channel information along the sub-
carrier dimension due to frequency hopping, we assume a 1

hp

frequency hopping, meaning each observation captures only
1
hp

of the total subcarriers. As illustrated in the red box of
Fig. 1, we select every hp channel slice matrices to form Nsub

hp

subtensors along the subcarrier mode:

Hi = H(:, :, :,Ji) ∈ CNrx×Npol×Ntx×hp , i = 1, ..., Nsub
hp

, (5)

where the index set of the i-th group is:

Ji =
{
i+ Nsub

hp
(k− 1) | k = 1, . . . , hp

}
, i = 1, . . . , Nsub

hp
. (6)
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Fig. 1: The detailed architecture of our proposed deep tensor learning model for reliable channel charting.

For the i-th subtensor, we perform a mode-1 unfolding of
Hi to obtain H(i),1 ∈ CNrx×(Npol Ntx hp). We then compute its
covariance matrix along the first mode (known as the spatial
covariance matrix):

Ci =
1

Npol Ntx hp
H(i),1 H

H
(i),1 ∈ CNrx×Nrx . (7)

Finally, we stack these spatial covariance matrices to construct

the spatial covariance T ∈ CNrx×Nrx×
Nsub
hp , i.e., T (:, :, i) = Ci.

The proposed spatial covariance tensor T captures infor-
mative spatial correlations among BS antennas across dif-
ferent subbands, making it expressive. Its dimensionality is
significantly smaller than that of the original channel tensor
or conventional auto-correlation feature vectors, ensuring con-
ciseness. Furthermore, partial observations (due to frequency
hopping) still allow the computation of T , and the averaging
operation in (7) helps mitigate noise to some extent. Therefore,
T is also robust against noise and missing channel data.

B. Part 2: Tucker Denoise Module

We begin by recalling tensor Tucker decomposition [19].
For a third-order tensor Y ∈ CI1×I2×I3 , its Tucker represen-
tation is

Y ≈ G ×1 U1 ×2 U2 ×3 U3, (8)

where Un ∈ CIn×Rn (n = 1, 2, 3) are orthonormal factor
matrices (UH

n Un = In), Rn ≤ In, and G ∈ CR1×R2×R3 is
the core tensor. Here, ×l denotes a mode-l product: for an
L-th order tensor A ∈ CI1×···×IL and a matrix B ∈ CJl×Il ,
the result C = A×l B satisfies

Ci1,...,jl,...,iL =

Il∑
k=1

Ai1,...,k,...,iL Bjl,k. (9)

Similar to SVD, choosing relatively small {Rn}3n=1 in
Tucker decomposition helps filter out noise:

Y recons = G ×1 U1 ×2 U2 ×3 U3. (10)

Motivated by this principle, we apply (8) and (10) to T to
obtain T denoised, as illustrated in Part 2 of Fig. 1. For neural
network training, we then separate its real and imaginary
parts, ℜ(T denoised) and ℑ(T denoised), which serve as inputs to
subsequent layers. We refer to this entire process as the Tucker
denoise module, denoted by D(·).

C. Part 3: Integrating Tensor Computations in the Neural
Network

Our framework employs a tensor contraction layer (TCL)
[20], [21] to process the feature tensors, as illustrated in Part
3 of Fig. 1. Let X (l) ∈ RIl

1×Il
2×Il

3 be the input to the l-th
TCL. Its output is

X (l+1) = ζ
(
X (l) ×1 V

(1)
(l) ×2 V

(2)
(l) ×3 V

(3)
(l)

)
, (11)

where {V(i)
(l) ∈ RIl+1

i ×Il
i}3i=1 are learnable factor matrices,

X (l+1) ∈ RI
(l+1)
1 ×I

(l+1)
2 ×I

(l+1)
3 , and ζ(·) is activation function.

Because TCL builds upon Tucker decomposition, it ef-
fectively captures multi-dimensional structures with relatively
few parameters. To further increase model capacity, we stack
multiple TCLs to form an L-layer block:

X (L) = ζ
(
. . . ζ

(
X (0) ×1 V

(1)
(0) ×2 V

(2)
(0) ×3 V

(3)
(0)

)
. . .

×1 V
(1)
(L−1) ×2 V

(2)
(L−1) ×3 V

(3)
(L−1)

)
, (12)

where X (0) is the initial tensor input and {V(j)
(i) |i = 0, . . . , L−

1; j = 1, 2, 3} are learnable factors. Let X Re,(L) and X Im,(L)

denote outputs of these two L-layer TCL blocks with inputs
ℜ(T denoised) and ℑ(T denoised). We vectorize and concatenate
them as

Concat(Vec(X Re,(L)),Vec(X Im, (L))) ∈ R2(IL
1 ×IL

2 ×IL
3 ), (13)

which is finally fed into a fully connected network (FCN) to
produce the channel chart. We denote the overall parametric
mapping as Gθ(·), where θ denotes the set of parameters in
TCL layers and FCN.

D. Training and Inference

In the channel charting optimization problem (4), defining
appropriate dissimilarity metrics dij is crucial. Various metrics
have been proposed to quantify distances between channel
data, but many fail to account for real-world impairments. As
outlined in [5], these metrics typically fall into two categories:
side information-based and channel data-based. In this work,
we focus on the latter. Motivated by the importance of channel
covariance matrices in MIMO-OFDM systems [23] and their
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robustness against noise and missing channel data, we adopt
a spatial covariance matrix-based dissimilarity:

dSCM,ij = 1−
trace

(
CH

i Cj

)
||Ci||F ||Cj ||F

, (14)

where Ci and Cj are the spatial covariance matrices of the
i-th and j-th channel observations, respectively. As illustrated
in [5], [24], geodesic dissimilarity provides a more rational
representation of the distance between channel data and is
therefore applied in our work. We adopt a similar procedure
as Sec.III.H in [5] to get dG-SCM,ij for our network training.

As illustrated in Fig. 1 and according to Sec. III A-C, our
proposed channel charting function is expressed as:

z(·) = Gθ(D(F (·))). (15)

Consequently, the training objective of our DTL-based channel
charting is:

LTDL-charting =

N−1∑
i=1

N∑
j=i+1

(
dG-SCM,ij

− ∥Gθ(D(F (Hi)))−Gθ(D(F (Hj)))∥2
)2

, (16)

where the network parameters can be learned via Adam
optimizer [25].

During inference, let H̃ be an out-of-sample channel data to
be charted, and θ∗ = argminθ LTDL-charting. Then, its pseudo-
position is given by:

z̃ = Gθ∗(D(F (H̃))). (17)

IV. EXPERIMENTAL RESULTS

We evaluate our method using Quadriga-simulated channel
data consisting 1000 samples. The BS is equipped with
a 4 × 8 dual-polarized rectangular antenna array, yielding
Nrx = 32, Npol = 2. The UE has two transmit antennas
(Ntx = 2), and each channel data includes 408 subcarriers
(Nsub = 408) spaced over a 240kHz bandwidth with a 3.5GHz
carrier frequency. For incomplete observations, we consider
1/17 frequency hopping, i.e., only consecutive 1/17 subcarrier
data can be observed at a time. Channel data is mapped into
two-dimensional pseudo-positions, i.e., in (3), D = 2.

Baselines: We compare 5 channel charting algorithms:
two deep learning-based methods—Angle-Delay Profile-based
(ADP) [5] and Raw 2nd-moment-based (R2M) [2], and three
manifold learning-based methods—UMAP [26], t-SNE [9] and
Isomap [24]. This paper primarily focuses on deep learning-
based methods, as their parametric nature enables the rapid
generation of pseudo-positions for new test channels, which
is crucial for real-world channel charting applications. In
contrast, manifold learning-based methods are non-parametric,
making them difficult to extend for out-of-sample charting.
These methods are included for comparison to assess the
effectiveness of our proposed approach. For deep learning
approaches, the batch size, learning rate and training epochs
are set to 32, 1× 10−3 and 300, respectively.

TABLE I: Channel Charting Results For Ideal Channel Data
Method CT↑ TW↑ KS↓ Parameters Out-of-sample

Deep
learning-based

DTL 0.9922 0.9732 0.1304 11730 Easy
ADP 0.9604 0.9264 0.2027 1.5B Easy
R2M 0.9152 0.9475 0.2474 985M Easy

Manifold
learning-based

UMAP 0.9929 0.9866 0.3846 / Hard
t-SNE 0.9960 0.9989 0.4180 / Hard
Isomap 0.9829 0.9750 0.1375 / Hard

TABLE II: Channel Charting Results Under Noisy And In-
complete Observations

Method SNR: 0dB 1/17 Frequency Hopping Out-of-sample
CT↑ TW↑ KS↓ CT↑ TW↑ KS↓

Deep
learning-based

DTL 0.9875 0.9727 0.1669 0.9866 0.9665 0.1781 Easy
ADP 0.8991 0.8794 0.3595 / / / Easy
R2M 0.9087 0.8797 0.5829 / / / Easy

Manifold
learning-based

UMAP 0.9940 0.9857 0.3595 0.9913 0.9848 0.4042 Hard
t-SNE 0.9952 0.9977 0.4008 0.9930 0.9967 0.3883 Hard
Isomap 0.9776 0.9727 0.1672 0.9757 0.9677 0.1795 Hard

Performance metrics: We adopt three widely used metrics
in channel charting: continuity (CT), trustworthiness (TW),
and Kruskal’s stress (KS). All three range from 0 to 1.
Specifically, CT and TW are optimal at 1, indicating local-
neighborhood preservation. KS is optimal at 0 to capture
global-structure fidelity. For details of these definitions, see
[5]. We also compare the number of trainable parameters for
each deep learning method.

Results: Tab. I summarizes the performance of various
charting methods using ideal channel data. Among the deep
learning approaches, our proposed DTL achieves the highest
CT and TW while yielding the lowest KS, which is attributed
to our tensor modeling for feature extraction. Also, our tensor-
based neural network leads to significantly fewer parameters,
confirming that the tensor computations are effective for
network-size reduction. In contrast, UMAP and t-SNE perform
the best in terms of CT and TW, but exhibit poor performance
in KS. This is because these algorithms prioritize preserving
local structure instead of global structure.

Tab. II shows charting results under noisy and incom-
plete scenarios (SNR=10dB, 1/17 frequency hopping). Our
proposed DTL model still outperforms other deep learning
approaches with minimal performance degradation. The large
channel features and network parameters in ADP and R2M
make them highly susceptible to noise, and they struggle to
compute physically meaningful channel features and dissim-
ilarity distances under incomplete observations. In contrast,
our DTL model fully leverages low-rank tensor structure
in feature design, making it robust and reliable to noisy
and incomplete measurements. Additionally, manifold learning
algorithms, which only require dissimilarity distance matrix
for training, demonstrate stable performance, indicating the
inherent robustness of our designed metric (14) in practical
settings.

Fig. 2 shows our charting results. Following [5], [27], we
adopt an optimal affine transformation to the channel chart
obtained under noisy and incomplete measurements. Clearly,
both local and global structures are preserved well under real-
world impairments compared to ideal chart, which indicates
the reliability of our proposed DTL for channel charting.
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Fig. 2: (Left) Channel chart with ideal data. (Middle) Channel charts using noisy data (SNR = 0 dB, orange points) and
ideal data (purple points). (Right) Channel charts via incomplete data (1/17 frequency hopping, blue points) and ideal data
(purple points). Despite real-world impairments, both the local and global structures in our DTL-based charting results are
well preserved compared to the ideal chart, demonstrating the reliability of our proposed DTL for channel charting.

V. CONCLUSION

In this paper, we introduce a deep tensor learning method
for reliable channel charting under noisy and incomplete mea-
surements. By exploiting the inherent low-rank structure of
MIMO-OFDM channels, we effectively extract features while
suppressing noise and handling missing entries. Additionally,
our work highlights the importance of integrating domain-
specific multi-dimensional data priors into neural networks for
processing wireless channel data. Experimental results demon-
strate that DTL outperforms state-of-the-art deep learning-
based methods with significantly reduced model complexity
and is therefore well-suited for practical deployment.
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[11] E. Lei, O. Castañeda, O. Tirkkonen, T. Goldstein, and C. Studer,
“Siamese neural networks for wireless positioning and channel charting,”
in 2019 57th Annual Allerton Conference on Communication, Control,
and Computing (Allerton). IEEE, 2019, pp. 200–207.

[12] Y. Liu, “Frequency hopping spread spectrum: An effective way to
improve wireless communication performance,” Advanced Trends in
Wireless Communications, pp. 187–202, 2011.

[13] K. Wu, J. A. Zhang, X. Huang, and Y. J. Guo, “Frequency-hopping
mimo radar-based communications: An overview,” IEEE Aerospace and
Electronic Systems Magazine, vol. 37, no. 4, pp. 42–54, 2021.
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