Adaptive Sampling for Online UAV-Aided Radio
Map Sensing

Na Zhang?, Rui Zhou!, Ming-Yi You*, Wengiang Pu?
!Shenzhen Research Institute of Big Data, The Chinese University of Hong Kong, Shenzhen, China
*National Key Laboratory of Electromagnetic Space Security, No.36 Research Institute of CETC, China

Abstract—Unmanned Aerial Vehicle (UAV)-assisted radio map
reconstruction offers a flexible and efficient alternative to labor-
intensive process of manual measurements for communication
and sensing tasks in next-generation wireless networks. However,
the limited flight duration of UAVs necessitates an efficient and
adaptive sampling strategy to maximize the value of limited
measurements. In this paper, we propose an adaptive sampling
scheme that integrates Gaussian Process Upper Confidence
Bound (GP-UCB) with cross-entropy (CE) optimization to dy-
namically balance the exploration-exploitation trade-off during
radio map reconstruction and emitter localization. To further
enhance trajectory optimization and sampling efficiency, gradient
ascent is employed within the CE framework. Unlike conventional
methods that focus primarily on uncertainty-based sampling,
our approach simultaneously reconstructs the radio map and
localizes emitters, ensuring accurate representation of the radio
environment. Numerical experiments conducted in simulated
radio environments demonstrate that the proposed scheme ef-
fectively addresses the dual objectives of emitter localization and
radio map exploration, achieving reconstructions with reduced
sampling time.

Index Terms—Radio Map, Adaptive sampling, Motion plan-
ning, UAV, Cross-Entropy, Gradient ascent.

I. INTRODUCTION

Radio maps [1]—-[3] spatially characterize radio frequency
(RF) signal distributions such as received signal strength
(RSS) and interference levels, serve as a foundation for
wireless network planning, spectrum management, location-
based services etc. Radio map reconstruction aims to infer the
radio environment of the area of interest from sparse mea-
surements by leveraging data-driven techniques. Traditional
radio map construction methods rely on labor-intensive field
measurements or deterministic propagation models, which are
impractical for large-scale deployments and fail to adapt to
dynamic environments. Methods such as matrix completion
[4], dictionary learning [5], and deep learning [6] have shown
promise in balancing accuracy and measurement efficiency.
These methods exploit sparse data and underlying signal
structure to generate reliable radio maps with few measure-
ments. Despite these advancements, existing reconstruction
works typically depend on real data collected through fixed
sensors distributed across the region of interest, which may
result in incomplete or biased maps, particularly in scenarios
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where emitters’ positions hold crucial information for accurate
reconstruction.

Conversely, the integration of unmanned aerial vehicles
(UAVs) into radio environment sensing and monitoring in-
troduces unprecedented flexibility and agility [7]. With the
embedding of intelligence, UAV-assisted systems enable on-
demand data collection across large or inaccessible areas,
while supporting online sampling planning in the face of an
unknown environment. Nevertheless, given the limited flying
time of UAVs, strategically selecting measurement locations
and dynamically optimizing trajectories in response to the re-
construction feedback become crucial for such online settings.

Fig. 1. UAV-assisted radio map sensing.

In this paper, we propose an adaptive sampling scheme
for online UAV-assisted radio map sensing, which integrates
data-driven reconstruction with intelligent trajectory planning.
Unlike prior works [1], [4], [6], [8], [9] that focus solely
on radio map reconstruction and rely on uncertainty-based
criteria to guide UAV trajectories, our approach tackles a more
comprehensive sensing task: simultaneously reconstructing the
radio map and estimating emitter locations. This dual objec-
tive introduces challenges as conventional uncertainty-based
criteria are insufficient. Specifically, uncertainty-based criteria
fail to account for regions with high RSS, which require more
intensive sampling but are not prioritized under uncertainty-
based criteria.

Achieving this dual sensing task requires addressing the
fundamental exploration-exploitation trade-off: exploration en-
sures sufficient sampling in areas with high uncertainty, while
exploitation focuses on regions critical for emitter localization,
as shown in Fig 1. To this end, we leverage Gaussian Processes
(GPs) to statistically model the spatial correlation of radio sig-
nals. GPs provide both signal predictions and uncertainty met-
rics across the region of interest, enabling informed decision-

EUSIPCO 2025



making during trajectory planning. By strategically combining
these two metrics, we design an adaptive sampling scheme
that balances exploration and exploitation. This scheme dy-
namically and iteratively refines UAV trajectories based on
reconstruction feedback, ensuring both the efficiency of radio
map reconstruction and the accuracy of emitter localization.

II. SYSTEM MODEL

A. GP Model for Radio Map

Supposing the 2D radio map f : R? — R of the area of the
interest X is modeled as a GP [8], [9]:

fC) ~GP(u(), k()

where p(+) is the mean function and k(-,-) is the covariance
kernel indicating the characteristics of the radio map. For each
x € X, measurement y, i.e., RSS, conducted by the UAV is
corrupted with an additive noise,

y:f(x)+€v 6NN<07052)7

where o2 is the noise variance. Denote historical data consist-
ing of N collected measurements as Y = {yo,y1,..-,Yn—1}>
which are sampled at locations X = {xg,x1,...,Xn_1}.
Using GP provides an effective way for predicting map values
at any location x € X based on the collected samples. Specif-
ically, GP models f(x) along with Y as a joint multivariate
Gaussian distribution given by
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where Yyx = K(X,X), Exy = k(%,X), yx = r(X,x),
Yyy = k(X,X) + 021. Then, GP regression (GPR) make
predictions for location of interest as'

(%) = px + K(x, X)K Y — py), 0

0?(x) = k(x,x) — k(x, X)K 'K(X,x).
where px and py = [fxgs Mxys- - -5 Hxy_,) are initial value
for locations and K = k(X,X) + o21. It is important to
note that x(x) denotes the predicted RSS value at location x,
while the posterior variance o%(x) quantifies the uncertainty
associated with this prediction. Locations with higher predic-
tion variance are particularly valuable, as they provide more
informative data to reduce the uncertainty of the radio map
[10]. Finally, we highlight that x(x) and o2(x) encapsulate
critical information regarding the unsampled location x. These
metrics are essential for guiding UAV’s motion planning, as
they help balance between the exploration of more informative
areas and the exploitation of regions characterized by higher
RSS values. A detailed discussion of this balance is provided
in Section III-A.

'In GPR, the kernel hyperparameters are recursively updated by maximizing
the likelihood as new samples are collected. Since this is a standard procedure
in GPR, the detailed steps are omitted for brevity [8], [9].

B. Dynamic Model of UAV

At time ¢, the UAV is modeled as a continuous-time non-
linear dynamical system governed by the ordinary differential
equation (ODE):

St = Q(St,ut),

where s; € X denotes the system state and u; € U represents
the control input. The state space A encompasses all kine-
matically admissible configurations of the vehicle, actuated by
inputs drawn from the action space Y. Concretely, the system
state vector sy = [r¥, 7}, 0;]" integrates the planar position
x; = [r¥,7{]T and the heading orientation #;. The control
input u; = [vy, wt]T comprises the linear velocity vy and the
rotation rate w;.

However, frequent real-time state updates impose com-
putationally intractable overhead for feedback-based motion
planning systems. To address this, the dynamic motion model
of the system over a discretization interval A; = ¢/ —¢ is then
formulated as [11]:

- ¥+ 2 (sin(0; +wy - Ag) —sinby), wy #0
Ty = t 5
t r{ +vpsingy - Ay, otherwise
v ry — ;—tt(cos(et +wy - Ay) —cosby), wy#0
t Ty +vpcos by - Ay, otherwise ’

Gt/ = Gt +wt . At'
2
Besides, we apply first-order linearization to the dynamic
model, which yields the discrete-time linear state transition
function as follows:

str1 = L(s¢,up) = Agsy + By, 3)
where A; = % represents the Jacobian matrix of current

state to the previous state and B; = % the Jacobian matrix
of current state to the control parameters, derived from (2).

C. Motion Planning Formulation

The UAV actively senses the radio environment and
evaluates surrounding regions with a reward function
Ri(p14(-),02(+)) derived from GP. To enhance foresight and
assimilate richer environmental information, receding horizon
planning (RHP) method is integrated into motion planning.

The RHP methodology [12] operates as follows: At each de-
cision epoch ¢, the UAV plans a trajectory comprising H future
waypoints. Denoting the current state as s, the UAV optimizes
its path over a discrete-time horizon {¢t +hA;h =1,..., H}.
For notational compactness, we define the predicted state
sequence {S¢yA,,St12A,,--->St4HA, } = {st,s2,...,sT} A
candidate trajectory 7 = {x},x?,...,x} thus accumulates
a total reward

H
Je=>_ Ry(xp),
h=1

where x = |s!'| denotes the planar position (obtained via

projection |-]) of the state s!.
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Accordingly, the control sequence over the horizon is
U; = {u),u},..ul’ !} with ul = [v},w?]". This yields the
receding-horizon optimization problem:

Z Ry (g( St7Ut7wt)J)

s.t. s; Atst+Btut, Vi, “)
xi € X, ulcl, Vi,

w; € [wip, wup], Vi,

max Ji =

+1

'Uz S [Ulbvvub]a

where vyp, Vb, Win, Wyp represent the physical actuation limits
of this vehicle.

III. ADAPTIVE SAMPLING STRATEGY

Our adaptive sampling procedure, as depicted in Algo-
rithm 1, consists of two parts: data fitting and decision making.
In data fitting part, GP regression introduced in Section II-A
is adopted to fit the sampled history data and then predict the
reward derived from GP for new locations. In the decision-
making part, the UAV will determine its next movement
through motion planning.

Algorithm 1 Online UAV-assisted Adaptive Sampling
1: Initialization: Starting state x, Sampling dataset D =
{(x0,%0)}, Metamodel f <+ GPR(D), t =0
2: repeat
3 Update reward function R; based on f
4 Trajectory m; = {x;,x?,...,x2} = Planning(R;, x;)
5. Fly along 7; and obtain new samples DU{(x},y}), ...}
6:  Update Metamodel f < GPR(D)
7
8

t—t+1
: until ¢ achieves the maximum mission time 7},

A. Exploration-Exploitation Trade-off Reward

The selection of the reward function R;(x;) in problem (4)
is crucial for effectively guiding the UAV’s motion. A straight-
forward approach is to set R;(x:) = p1(x;), which focuses on
sampling points with high RSS values. However, this method
may lead the algorithm to converge to a local optimum.
Conversely, a strategy that prioritizes high uncertainty, i.e.,
Ri(x¢) = o(x¢), could overlook valuable information sur-
rounding the signal source. To address this trade-off between
exploration and exploitation, the GP-UCB (Upper Confidence
Bound) [13] framework is adopted, which provides a balanced
approach that combines both strategies. Inspired by the under-
standing that uncharted areas require increased exploration as
time progresses, our reward function is defined as follows

| D|ten? )
66 7

where | D| denotes the dimension of the input space, a > 2 and
d € (0,1) are pre-determined parameters. In this formulation,
the term [; effectively scales the uncertainty, enabling our
strategy to dynamically adjust its focus on exploration as time
progresses. Notably, when a = 2, this configuration reduces

Ri(x¢) = p(x¢) + Bro(xt), B = |/ 21og (

to the typical GP-UCB. While our approach places a signif-
icant emphasis on exploring regions with high uncertainty.
Numerical simulations presented in Section IV demonstrate
that this setting fosters a more comprehensive understanding
of the environment over time. As a result, it enhances the
decision-making capabilities of the UAV’s sampling strategy,
allowing for more informed and effective exploration of the
environment.

B. Gradient Enhanced Cross-Entropy Optimization

The cross-entropy (CE) method [14] is a powerful technique
for addressing the optimization problem outlined in (4). This
approach treats the optimization task as an estimation problem
for rare events, employing importance sampling to efficiently
find solutions. Let us denote the optimal value of the objective
function for each planning step as:

*
v, = max Jy
t U, )

which can be considered as a rare event in this context.
The process of identifying the optimal control parameters
from a sampling distribution involves iteratively simulating
these rare events until the distribution converges towards a
delta function. Consequently, the reward ~F in iteration k
approaches the optimal value ;. By focusing on elite samples,
the CE method efficiently narrows down the search space,
leading to improved convergence and performance in solving
the optimization problem.

However, the random sampling procedure inherent in the
CE method does not fully leverage the gradient information
provided by the reward function, which can result in inefficient
sampling. To address this, we propose a gradient enhanced CE
method that facilitates guided sampling. Denote the control
parameters as

z = {vo,wo, V1, W1, ..., VH—1,WH_1},

where z follows a Gaussian mixture distribution, expressed as
2z~ N(uz,X,). Our proposed gradient enhanced CE method
involves updating the mean p, and the covariance X, based
on the samples, integrating gradient information to refine the
sampling process. The detailed steps for implementing this
approach are outlined below.

Initialization. Set pg = {u&, X¢} as the initial parameters
of the distribution for z, where z ~ N (g, 2%).

Sampling. For each CE iteration k € {1,2,..., K}, draw
G samples {z1,22,...,2¢} from N (u},X7), while ensuring
that the control samples and the generated trajectories remain
within the specified operational boundaries.

Optimization. For each sampled trajectory, use the gradient
information from the reward model to optimize the control
parameters. This is achieved by updating the parameters as
follows:

2l zg' VI,
where m € {1,2,..., M} denotes the optimization step, and
7 represents the step size.
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TABLE I
SIMULATED RADIO MAP SETTING.

Emitter 1 2 3 4 5
Power [W] 1.2 0.2 0.8 1.5 0.5
Height [m] 5 3 2 4 1
Longitude  -71.3561  -71.3573  -71.3635 -71.3624  -71.3661

Latitude 42.3346 42.3412 42.3403 42.3369 42.3342

Parameter Update. Let the reward 7} be the o percentile
of J; under pg, choose the elite set €, of the samples
evaluated with J;(2,) > vF. Update the parameter estimation
My1> 2, for Gaussian distribution based on expectation-
minimization method [14].

Termination. Terminate until the preset iterations end
or KL-divergence between N (uf,%7) and N (uf Y5, )
smaller than a fixed threshold. Then choose z; which has the
highest reward as the final solution z*.

IV. SIMULATION RESULTS

In this section, we compare the sampling trajectory, re-
construction error, and computation time of the proposed
algorithm against the uncertainty-based baseline [8], [9]. All
experiments are run on server with 2 CPUs of which the type
is Intel(R) Xeon(R) Gold 6230R CPU @ 2.10GHz.

A. Experiment Setup

Radio Map Setting: To evaluate the algorithms, a radio
map is generated using MATLAB, based on a coverage map
that utilizes a free space propagation model without any build-
ing blocks. In the defined region X, five emitters operating on
the same frequency are deployed, with the coverage map ex-
tending to a maximum range of 600 m. Detailed specifications
of the emitters can be found in Table I.

UAV Setting: The UAV equipped with a sensor capable of
collecting signal strength data flying at a constant altitude of
10 m is considered. Its velocity and rotation rate constraints
are defined as follows: the lower and upper bounds of the
UAV’s velocity are vy, = 0.5 m/s and v,, = 8 m/s, respec-
tively, while the rotation rate bounds are w;, = —1.2 rad/s
and wy;, = 1.2 rad/s. The sampling interval is A; = 1 s, and
the receding horizon length is H = 5. Ultimately, it executes
the two steps that yield the highest expected reward. This
approach allows for efficient exploration of the environment
while optimizing data collection.

Algorithm Setting: To examine the influence of the
exploration-exploitation trade-off on the adaptive sampling
algorithm, we set 6 = 0.9 and |D| = 2 (Lat..Lon.) for S,
and compare the reconstruction results across various settings
of a = 2,4,6, 8. For the gradient enhanced cross-entropy op-
timization, we establish the total number of iterations K = 2,
the optimization steps M = 5, and the number of sampling
trajectories G = 20. Additionally, the step size n is fine-
tuned separately for both velocity and rotation rate. For the
initialization of control parameters, ug is typically set around
the midpoint of the admissible range with 3§ set to unity.

TABLE II
COMPARISON OF POSITIONING ERROR FOR DIFFERENT SETTINGS.
Setting Uncertainty a=2 a=38
Lon. Err. 2.46e — 5 1.43e—5 1.5le—5
Lat. Err. 4.84e — 5 1.84e—5 0.78e —5

B. Results and Analysis

Fig. 2 illustrates a comparison of sampling trajectories
and reconstructed radio maps under different exploration-
exploitation trade-off settings. As anticipated, sampling based
solely on uncertainty drives the UAV toward unexplored areas.
While this approach ensures that sampling points are dis-
tributed across the entire map, it neglects critical information
about the source location. In contrast, subfigures (b) and (c)
demonstrate the effectiveness of balancing exploration and
exploitation, where the UAV focuses more on regions with
higher RSS. Consequently, the sampling point density near the
source is sufficiently high to accurately indicate the source’s
location. A detailed comparison of positioning error is pro-
vided in Table II. Furthermore, as the parameter a increases,
the proportion of uncertainty in the reward function grows
more rapidly over time, resulting in improved exploration of
the radio map.

Fig. 3 presents the reconstruction mean squared error (MSE)
for different values of parameter a. The numerical experiments
were repeated three times, and the resulting curves were
smoothed using a moving average with a window size of 15
for clarity. The results indicate that larger value of a reduces
the MSE more rapidly during the early stages of the sampling
process, but the differences in MSE gradually diminish, with
only a small gap remaining by the end of the process.
This demonstrates that while increased exploration accelerates
initial reconstruction, the trade-off has less impact as the
sampling process progresses and sufficient measurements are
obtained. Table II compares the localization error (in degree)
averaged across five emitters, where the locations of emitters
are coarsely estimated by the coordination of reconstructed
map’s peaks. It is evident that the uncertainty-based method
results in larger localization errors despite achieving the small-
est MSE in radio map reconstruction. In contrast, the proposed
sampling method with a = 8 strikes a better balance between
accurate localization and effective radio map reconstruction.

Fig. 4 compares the computation time for the standard
CE method with G = 50 and K = 10, and the gradient
enhanced CE method with G = 20, K = 2, and M = 5.
While both configurations achieve similar MSEs in radio
map reconstruction, their computation times differ. It can be
observed that the standard CE method is more time-consuming
due to its reliance on larger sample sizes, which requires
additional computational effort. Note that the computation
time per step increases as more data is incorporated into
the GPR, leading to longer prediction times for the reward
function and fluctuations in the computation time are caused
by resampling events when the sampling process encounters
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(a) trajectory: uncertainty-based

(d) reconstructed radio map: uncertainty-based

(b) trajectory: a = 2

(e) reconstructed radio map: a = 2

(c) trajectory: a = 8

(f) reconstructed radio map: a = 8

Fig. 2. Adaptive sampling results under different settings. The simulated radio map is demonstrated above the terrain map, and the signal strength is denoted
from high to low as from red to blue. In (a)-(c), the red point and the blue point represent the starting point and end point of the UAV, which conducts 500
planning sessions and collects 1000 samples in one sampling task. The pink points and trajectories are the sampling way points and sampling trajectories.
Reconstructed radio map at the end of the adaptive sampling task are depicted in (d)-(f).

CE-Sample50-Iter10

CE-Sample20-Opt5-lter2

0 100 200 300 400 500
Epoch

Fig. 3. Reconstruction MSE. Fig. 4. Computation time comparison.

boundary constraints.

V. CONCLUSION

In this work, we formulate adaptive sampling for online
UAV-assisted radio map sensing as an online sequential opti-
mization problem, comprising two key components: model fit-
ting and motion planning. We utilize GPR to construct a black-
box metamodel of the radio map, and design a reward function
inspired by GP-UCB to guide the sampling process. The
UAV’s motion planning is driven by a specifically designed
reward function that balances exploration and exploitation
and a gradient enhanced cross-entropy optimization method
is developed to generate the trajectory for the UAV, ensuring
efficient and effective data collection throughout the sampling
process.
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