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Abstract—Ultra-massive MIMO (U-MIMO) at sub-THz fre-
quencies is challenging for fully digital systems. This calls for
hybrid architectures, which complicates channel estimation, as
limited RF chains provide only linear combinations of received
pilots. Additionally, near-field effects at sub-THz frequencies
demand an optimized sampling grid in both angular and distance
domains. This paper aims to design and compare the performance
of a hybrid sub-THz U-MIMO system to a fully digital one.
We make use of a new metric to show that angular domain
oversampling improves the estimation accuracy of state-of-the-art
channel estimation schemes for hybrid architectures. Our anal-
ysis focuses on both channel estimation and spectral efficiency,
and shows that, in low-mobility scenarios, longer pilot sequences
can mitigate the limitations imposed by the reduced number of
radio-frequency chains. Comparable spectral efficiency of fully
digital systems is achieved, at the cost of large dictionaries.

Index Terms—Sub-THz communications, ultra-massive
MIMO, channel estimation, hybrid and fully digital architecture.

I. INTRODUCTION AND MOTIVATION

Ultra-MIMO (U-MIMO) in the sub-THz band exploits the
extremely short wavelengths to pack many antenna elements
into a small space, enabling high beam-focusing and spatial
multiplexing gains [1]. This is considered a promising tech-
nology to meet the high traffic demands of future wireless
communications [2]–[4]. However, in an all-digital architec-
ture, where each antenna element is paired with a dedicated
radio-frequency (RF) chain, this would be prohibitively power-
intensive. To overcome this issue, the number of RF chains
must be decreased by adopting hybrid architectures [5].

Although hybrid systems use fewer RF chains M than
antennas N , it is known that hybrid architectures can perform
as well as fully digital systems, provided that M is equal
to or greater than the number of data streams [6]. However,
this equivalence holds under the assumption that fully digital
and hybrid systems share the same channel state information
(CSI). In real-world applications, where the channel is not a-
priori known and must be estimated, the equivalence between
hybrid and fully digital systems does not hold, because their
channel estimators may have very different accuracies.

Unlike sub-6 GHz communications, where user equipments
(UEs) are typically in the far field of the BS array and
orthogonal codebooks based on discrete Fourier transform
matrices are effective, sub-THz frequencies place UEs in the
radiating near field [7]. This shift requires the development
of near-field codebooks that are different from those used in
far-field beamforming. In near-field beamforming, the range
domain becomes essential due to the finite beamforming depth,

adding complexity beyond the angular considerations of far-
field scenarios [8]. Recent polar domain dictionary designs
for linear and planar arrays aim to better control codebook
column coherence [9], [10]. Since accurate near-field channel
estimation typically requires large codebooks, new channel
estimation algorithms with overheads independent of dictio-
nary size have emerged. Among them, the polar-domain si-
multaneous orthogonal matching pursuit (P-SOMP) algorithm
[9] efficiently exploits channel sparsity for near-field channel
estimation.

This paper presents the design and performance evaluation
of a hybrid sub-THz U-MIMO system using the P-SOMP
algorithm for channel estimation. We design the dictionary
based on the correlation criterion in [9] and introduce a novel
metric for its evaluation, showing that the accuracy improves
significantly by increasing sampling density in both angular
and distance domains. Notably, adding points in the distance
domain alone does not yield the same improvement. Our
analysis demonstrates that in low-mobility scenarios, using
longer pilot sequences can offset the limitations of fewer RF
chains, achieving spectral efficiency (SE) comparable to fully
digital systems with least-squares (LS) channel estimation,
even as the number of UEs grows. However, this comes at
the cost of large dictionaries, which may not be practical in
real-world scenarios.

II. CHANNEL ESTIMATION

We consider the uplink of a U-MIMO system with K single-
antenna active UEs. The BS has M ≥ K RF chains and is
equipped with N ≫M antennas arranged in a uniform linear
array (ULA) with an inter-element spacing of δ. Hence, the
array aperture is ∆ = (N −1)δ. We assume a fully-connected
architecture in which each antenna is connected to each RF
chain. Under line-of-sight (LoS) propagation conditions, the
channel from UE k to the nth antenna of the BS is

hkn =
√
ξkne

−j 2π
λ dkn (1)

where ξkn accounts for the path loss and the transmit/receive
antenna gains, dkn denotes the Euclidean distance between
the centers of the transmitting antenna of UE k and the nth
receiving antenna, and λ indicates the wavelength. We call
hk = [hk1, . . . , hkN ]

T ∈ CN the channel vector of UE k. UEs
are co-planar with the ULA and randomly displaced choosing
distances from the BS from U(ρmin, ρmax) and azimuth angles
from U(φmin, φmax). All parameters are chosen according to
Tab. I. The boundary between the near-field and far-field of
the BS array is typically given by the Rayleigh distance, ρR =
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Fig. 1: Uplink transmission protocol for hybrid architectures.

2∆2

λ . Since UE distances range from ρmin = 5m to ρmax =
25m, all UEs are in the near-field of the the BS array.

The standard time division duplex protocol is used [11,
Sec. 2.3.2], where τc available channel uses are divided into
τ for the UL channel estimation phase and τc − τ for data
transmission. Next, we review the channel estimation with
hybrid and fully digital architectures. In the former case, the
P-SOMP channel estimation algorithm proposed in [9] is used.

A. Hybrid Architecture

During the training phase, UEs transmit pilot sequences of
length τp, following to a time-division multiple access scheme
shown in Fig. 1. Consequently, the total number of channel
uses required by the training phase is τ = Kτp. This overhead
could be further reduced using different protocols, such as
with multi-carrier waveforms [9], but we do not consider them
because we operate in a low-mobility scenario, where the
overhead is already much smaller than the coherence block
size. Without loss of generality, we focus on an arbitrary UE
and we drop the user index k. Let ψ ∈ Cτp represent the
pilot sequence, with |ψi|2 = 1 for i = 1, 2, . . . , τp, so that
∥ψ∥2 = τp, and let Ai ∈ CM×N denote the analog combining
matrix corresponding to the ith pilot symbol, whose entries are
randomly chosen in {±1/

√
N} with equal probability [12].

Then, the ith received pilot signal yi ∈ CM can be written as

yi = Ai

(√
Pψih+ ni

)
(2)

where P is the transmit power and ni ∈ NC
(
0, σ2IN

)
accounts for the noise. Without loss of generality, we assume
ψi = 1 for i = 1, 2, . . . , τp.

The P-SOMP algorithm, introduced in [9], estimates
the channel by using the observation vectors y =
[yT

1 yT
2 · · · yT

τp ]
T ∈ CMτp , collected during the channel es-

timation phase. It is based on the polar-domain representation
hP of the channel h, i.e., h = WhP given in [9, eq. (8)],
where W ∈ CN×Q is a suitable dictionary. The Q columns of
W are the array steering vectors w(φ, ρ) [9, eq. (7)] computed
over a discrete grid G of (φ, ρ) values. A good design of G is
essential for the operation of P-SOMP, and will be discussed
in detail in Section III.

B. Fully digital Architecture

In a fully digital architecture, the number of RF chains
equals the number of antennas, i.e., M = N , and each antenna
is connected to a dedicated RF chain. During the training
phase, the K UEs transmit over the same time-slot using

Parameter Value
Carrier frequency fc = 300GHz

Wavelength λ = 1mm
Number of antennas N = 256

Antenna spacing δ = λ/2

Bandwidth B = 100MHz
Noise power σ2 = −86 dBm
UE azimuth φmin = −π/3, φmax = π/3

UE distance ρmin = 5m, ρmax = 25m

Transmit Power P 15 dBm

Table I: System parameters.

orthogonal pilot sequences of length τp ≥ K [11]. Hence,
the total number of channel uses during the training phase is
τ = K, instead of τ = Kτp as in the hybrid case. Since
the UEs’ pilot signals do not interfere, we can focus again on
an arbitrary UE and we can drop the user index k. Also, we
can assume ψi = 1. The signal yi received in the ith pilot
interval can be obtained from (2) by setting Ai = IN . Here,
we consider the well-known LS estimator, which is simply
given by

ĥLS =
1

τ

τ∑
i=1

yi (3)

and represents the arithmetic mean of the vectors received
during the channel estimation phase.

III. POLAR-DOMAIN DICTIONARY DESIGN

The P-SOMP algorithm estimates the channel by utilizing
a grid of points, denoted as G, where each grid point is
represented by the coordinates [ρ cosφ, ρ sinφ, 0]. We begin
by reviewing the solution presented in [9], followed by an
introduction of our proposed alternative approach.

A. Angular and Distance Sampling [9]

In [9], the grid is designed by considering the maximum
correlation between the columns of dictionary W, defined as

µ = max
i ̸=j

{
|wH

i wj |
}
, (4)

where wi and wj are two columns of W. On one side, the
maximum correlation should be made as small as possible for
limiting the number of grid points. On the other side, it cannot
be too small because this would lead to a very sparse grid
G, with very few number of points and a reduced estimation
accuracy. The grid design proposed in [9] leads to a sampling
of the angular domain with N points such that Φ = sinφ is
computed over a uniform grid as

Φ =
2n−N + 1

N
, n = 0, 1, ..., N − 1. (5)

For each angle φ compatible with (5), the distance is non-
uniformly sampled as follows [9, Eq. (15)]

ρ =
1

s

1

2λ

(
Nδ

β

)2

(1− Φ2), s = 1, 2, 3... (6)

where the design parameter β controls the distance sampling.
Values of the parameter s that result in ρ falling outside
the range [ρmin, ρmax] or points outside the angular sector
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Fig. 2: The maximum normalized column coherence µ and
NMSEopt against β.

[φmin, φmax] are excluded. This refined grid G is then used
to construct the dictionary W.

Fig. 2 shows µ in (4) as a function of β with parameters in
Tab. I. Results show that as β increases, coherence decreases,
with a significant drop near β = 0.9, but this also reduces
the dictionary size. A good trade-off between the correlation
and the grid size is achieved with β = 0.88. In this case, the
correlation is 0.93 and the grid size is 246.

The correlation metric in (4) does not directly relate to
the accuracy of channel estimation. In fact, even though it
allows to design the dictionary to improve the localization
accuracy [8], the channel acquisition may not be as precise.
An alternative is the optimum NMSE1 defined as

NMSEopt = 1− E

{
min
g∈G

[
|hH(g)h(r)|2

||h(g)||2||h(r)||2

]}
(7)

where h(r) indicates the channel of the UE located in r, and
h(g) is the channel from the point g ∈ G. The expectation
is computed with respect to the UE’s position r. Note that
NMSEopt can be interpreted as a measure of the average error
in approximating the channel at an arbitrary point using the
channel value at a grid point. From this perspective, lower
values of NMSEopt are expected to improve the estimation
accuracy for grid-based algorithms, such as the P-SOMP. This
relationship will be further explored in the next section.

Fig. 2 also shows that, despite the correlation µ increasing
as β decreases from 0.88 to 0.65, the NMSEopt reduces to
−6.5 dB. We denote as G1 the grid defined by β = 0.65,
with a total of Q1 = 520 points.

B. Proposed Angular Sampling

The design criterion in [9] allows control over distance
sampling through β but not over angular sampling, where
points are distributed over N intervals. To address this, we
introduce a design parameter α > 0 and consider ⌊αN⌋ points
in the angular domain. This results in Φ′ = sinφ′, given by

Φ′ =
2n− ⌊αN⌋+ 1

⌊αN⌋
, n = 0, 1, ..., ⌊αN⌋ − 1. (8)

1It is currently challenging to design the grid G according to (7) instead
of (4), but, based on our analysis, we propose to keep designing the grid
according to (4) and use (7) as an alternative metric for parameters tuning,
such as the distance sampling factor β.

Fig. 3: NMSEopt and grid size Q for different values of the
angular and distance sampling factors

The distance domain is again sampled as

ρ′ =
1

s

1

2λ

(
Nδ

β

)2 [
1− (Φ′)

2
]

s = 1, 2, 3.... (9)

Values of the parameter s that result in ρ′ falling outside
the range [ρmin, ρmax] or points outside the angular sector
[φmin, φmax] are excluded. The design in Sec. III-A is a special
case of the proposed method, with α = 1.

Fig. 3 shows NMSEopt and Q as a function of α and
β, in the same conditions of Fig. 2. With no-oversampling
(α ≤ 1), NMSEopt ≥ −6.4 dB for any value of β. However,
by oversampling the angular domain (α > 1), we can find
better trade-off pairs between angular and distance sampling
factors (β, α) that improve NMSEopt without increasing the
computational complexity. For example, the curve level with
Q = 1500 shows that, despite corresponding to grids of
1500 points each, the pair (β, α) = (0.674, 3) gives an
NMSEopt = −12.4 dB, while the pair (β, α) = (0.384, 1)
only achieves an NMSEopt = −6.4 dB.

Additionally, either decreasing β or increasing α, NMSEopt
reduces, but the grid size also increases, leading to higher
computational complexity. The pair (β, α) = (0.576, 7.5)
(indicated by the red circle) represents a favorable balance
between channel estimation accuracy and complexity. In par-
ticular, we denote G2 the corresponding grid, which yields
NMSEopt ≈ −21 dB and Q2 = 5182. The analysis in
[9] shows that the computational complexity of P-SOMP
linearly increases with Q. For example, since Q2 ≈ 10Q1,
using G2 instead of G1 for P-SOMP operations increases its
computational complexity by a factor of 10. However, using
larger grids does not require additional system resources, such
as the number of pilots, which remains independent of Q.
Hence, larger grids do not increase communication overhead.

IV. PERFORMANCE EVALUATION

We now evaluate the P-SOMP estimation accuracy with
parameters reported in Tab. I, with a specific focus on the
effects of pilot length τp, number of RF chains M , and
grid selection. As a benchmark, we report the estimation
accuracy of a fully digital system with M = N , considering
LS for channel estimation and P-SOMP for hybrid channel
estimation. The impact on SE is also quantified.
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Fig. 4: NMSE against the number of RF chains M and pilot
sequence length τp.

A. Impact of Radio Frequency Chains

We begin by investigating the impact of M , assuming that
τp = 10. Fig. 4a shows NMSE of channel estimates as
a function of M . Since hybrid architectures are meant to
reduce the number of RF chains relative to the number of
antennas, we limit our analysis to M ≤ 30. We observe
that P-SOMP estimation improves as M increases. In fact,
the hybrid observation vector expands as the number of RF
chains grows, enabling P-SOMP to select better grid points
and thereby improving channel estimation accuracy. However,
P-SOMP performance is limited by the grid. Indeed, when M
becomes sufficiently large, P-SOMP consistently selects the
optimal grid point, and NMSE stabilizes. The larger the grid,
the higher M needs to be for this to happen. For example,
NMSE stops improving with M = 20 using G1, while NMSE
stabilizes out of the considered range using G2.

The comparison between hybrid and fully digital estimators
shows that P-SOMP performs slightly better than LS using the
lower complexity grid G1. Notably, using the higher complex-
ity grid G2 results in a much lower NMSE compared to G1,
but the price to pay is an Q2

Q1
= 10 times larger computational

complexity. However, P-SOMP outperforms the LS estimator
because the latter only achieves an NMSE = −5 dB owing to
τp = 10, so the pilot sequence is relatively short. Therefore,
we now evaluate the impact of τp.

10 20 30 40

40

45

50

55

60

65

Fig. 5: Average sum SE with MMSE combining as a function
of pilot sequence length τp with M = K = 10, τc = 10000.

B. Impact of the Pilot Sequence Length

We now analyze the impact of τp on NMSE for M = 10.
Increasing τp leads to higher SNR for fully digital estimation
and proportionally enlarges the observation vector for hybrid
estimation. Therefore, the accuracy of all methods improve
with higher τp. However, Fig. 4b shows that the P-SOMP
accuracy is limited by the grid once again. In fact, when τp
becomes large enough so that P-SOMP consistently selects the
best point in the grid for channel estimation, its accuracy stops
improving as τp increases. The larger the grid, the higher τp
needs to be before NMSE stabilizes.

Results show that LS performs better than P-SOMP using
the lower complexity grid G1 because the latter stabilizes
too quickly and does not improve with τp ≥ 20. However,
we also see that P-SOMP using G2 performs better than LS
in the considered range, and its accuracy keeps improving
as τp increases. In fact, since G2 is 10 times larger than
G1, the pilot sequence length after which NMSE stabilizes
falls out of the considered range. The price to pay is a
10 times larger computational complexity compared to G1.
Summarizing, LS eventually outperforms P-SOMP using long
enough pilot sequences regardless of the grid size. However,
if we can afford enough computational complexity, P-SOMP
is more accurate than LS with short pilot sequences.

Furthermore, the comparison between Fig. 4a and 4b shows
that the impact of M and τp on hybrid channel estimation
is equivalent. In fact, we observe that the P-SOMP accuracy
is approximately the same as long as the hybrid observation
vector size Mτp stays constant. This suggests that we can
potentially compensate for the reduced number of RF chains
in hybrid systems by increasing the number of transmitted
pilot symbols. Moreover, it suggests that NMSE with P-SOMP
stabilizes when Mτp is large enough, rather than when M or
τp are individually high enough.

C. Spectral efficiency evaluation

Channel estimation is the ancillary task to support data
detection. Therefore, we evaluate its impact on the achievable
uplink SE. This is obtained with the well-known use-and-then-
forget bound [11, Sect. 4.2] for the arbitrary user k, which
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Fig. 6: Average sum SE as a function of the number of UEs
K with M = K and τc = 10000 and MMSE combining.

yields SEk = (1− τ/τc)E {log2 (1 + γk)} where the factor
τ/τc accounts for the overhead loss, and γk is given by∣∣E{

vH
khk

}∣∣2∑K
i=1 E

{∣∣vH
khi

∣∣2}−
∣∣E{

vH
khk

}∣∣2 + σ2

ρ E
{
∥vk∥2

} (10)

with vk ∈ CN being the receive combining vector of UE k.
We consider a low-mobility scenario with K = 10UEs,

where each UE moves with speed v = 1m/s, and compute
the coherence time as λ

10v [11]. Additionally, we assume that
the coherence bandwidth equals B. Therefore, the coherence
block size is given by τc = Bλ

10v = 10000. We consider the
minimum-mean-square-error (MMSE) combining [11].

1) Impact of Pilot Sequence Length: Fig. 5 shows SE as a
function of the pilot sequence length τp. We observe that the
fully digital system with LS estimator achieves the best SE,
but the gap with respect to the hybrid one reduces when using
P-SOMP with the higher-complexity grid G2. The comparison
of Fig. 4b and 5 remarks that, from a communicational point
of view, it can be more relevant to evaluate the SE instead of
the NMSE of channel estimates. In fact, despite the NMSE
being significantly lower using P-SOMP with G2 than using
LS, the latter achieves the largest SE.

2) Impact of UEs: We now evaluate the impact of the
number of UEs (K) on the SE. We assume M = K because
each UE must be paired to at least one RF chain for data
detection. However, since hybrid architectures are designed to
reduce the number of RF chains, we do not consider K > 30.
Additionally, we assume τp = K for fully digital estimation
and τp = 20 for hybrid estimation. Fig. 6 shows sum SE
as a function of the number of UEs K. SE for LS and P-
SOMP with G2 grows linearly, which means that effective
interference cancellation is possible in the whole considered
range. However, when using P-SOMP with G1, SE linearly
grows up to K = 20 UEs, but channel estimation becomes not
accurate enough to allow for effective interference cancellation
with K > 20, so SE grows more slowly afterwards.

Notably, we observe that an aggregate SE of 50 bit/s/Hz
can be achieved with 10 UEs. Assuming a total bandwidth of
20 GHz split into 200 sub-bands of 100 MHz each; 10 active
UEs per sub-band and an average aggregate SE of 50 bit/s/Hz
per sub-band, we can theoretically achieve a total aggregate

throughput of 1 Tbps (i.e., 200×50 = 1 Tbps). However, this
requires the BS to receive a total power of 30Watt and 2000
UEs to transmit simultaneously, both of which are impractical
with current technology.

V. CONCLUSIONS

We investigated channel estimation for a 300 GHz hybrid U-
MIMO system using the P-SOMP algorithm [9] and compared
it to a fully digital system using LS channel estimation. Our
analysis focused on channel estimation accuracy and spectral
efficiency, examining the effects of RF chains number (M )
and pilot sequence length (τp). We found that increasing
pilot symbols can offset the reduced RF chains, preserving
accuracy and efficiency. Our study also highlighted that current
dictionary designs are inadequate for achieving optimal MSE.
Numerical results demonstrated that a 300 GHz hybrid U-
MIMO system can attain comparable spectral efficiency to
a fully digital system, but only when very large dictionaries
with angular oversampling are utilized. This underscores the
need for new dictionary design criteria, moving beyond the
traditional correlation-based metrics used in far-field commu-
nications.
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