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Abstract—This paper considers the reconstruction of near-
field line-of-sight multiantenna channels from the estimation of
the shape of the radio wavefronts giving rise to such channels.
This wavefront estimation can be conducted from only partial
observations, which amounts to channel interpolation and/or
extrapolation in near-field conditions. A tradeoff then arises and
is characterized between the number of antennas and frequency
bands on which pilot symbols are transmitted, the power of those
pilots, and the accuracy of the ensuing channel reconstruction.

I. INTRODUCTION

The default approach to channel estimation in multiantenna
wireless communication entails a direct estimation of the
channel entries for each transmit-receive antenna pair at each
frequency band [1], [2]. This approach, however, overlooks
the low-dimensional nature of many such channels, whose
entries are functions of a few propagation parameters, often
of a geometric nature. Leveraging this high degree of structure
can greatly reduce the estimation error [3].

Two persistent trends in the evolution of wireless technolo-
gies reinforce the appeal of leveraging the channel’s structure.
These are the growing antenna counts, pushing towards extra-
large multiple-input multiple-output (XL-MIMO) architec-
tures, and the broadening bandwidths. Together, they increase
the channel dimensionality dramatically, yet the number of
underlying parameters remains essentially unchanged.

While the most straightforward way to capitalize on the
channel’s structure is to estimate those underlying parameters
themselves, this is exponentially complex in the number of
such parameters [4]. Several parametric channel estimators
have been set forth, which indeed exhibit superior accuracy,
but are circumscribed to settings in which the number of
parameters is at most three. This, in turn, severely limits the
applicability: either linear transmit and receive arrays, or else
a planar array communicating with a single antenna.

Alternatively, the channel’s structure can be exploited by
estimating the shape of the radio wavefronts. The number of
coefficients required to describe the wavefronts, while slightly
higher than the number of underlying parameters, still does
not grow with the numbers of antennas or the bandwidth [4].
And, the computational complexity of wavefront estimation
scales at most quadratically in the number of coefficients in
the wavefront description, whereby the applicability of this
approach becomes universal, extending all the way to planar
transmit and receive arrays and multiple frequency bands.

Crucially, the shape of the wavefronts can be estimated
from only partial observations and, subsequently, the entire
XL-MIMO channel can be straightforwardly reconstructed.
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(a) Channel interpolation
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(b) Channel extrapolation

Fig. 1. Only the shaded entries are measured via pilot symbols; the
unobserved entries can be inferred via interpolation or extrapolation.

This amounts to interpolating and/or extrapolating to unob-
served points on an antenna-frequency grid, as illustrated in
Fig. 1. The stage is then set for a major reduction in pilot
overhead, and for a tradeoff between such overhead, the power
of the pilot symbols, and the estimation accuracy.

While there is considerable literature on channel interpo-
lation/extrapolation (see [5], [6] for frequency-domain tech-
niques, or [7] for end-to-end learning methods), the bulk of
it has been formulated for far-field conditions. However, the
push towards XL-MIMO and to higher frequencies expand the
near-field region [8]–[11], rendering obsolete any method de-
veloped exclusively for the far field. In contrast, a wavefront-
based interpolator/extrapolator can operate in both far- and
near-field conditions.

This paper focuses on links that are either line-of-sight
(LOS) or embodied by a specular reflection [12]. From the
series expansion of the distance between transmit and receive
antennas, the wavefront is modelled as a multidimensional
polynomial phase function [4]; this is a natural generalization
of the popular parabolic wavefront model [13]. Uniformly
sampling the channel on each dimension, as in Fig. 1(a),
the result is again a polynomial phase function. This is the
key observation that opens the door to near-field interpola-
tion/extrapolation, and suggests the use of the polynomial
phase estimator developed in [14], which attains the Cramer-
Rao bound (CRB) at high signal-to-noise ratio (SNR).

A. Notation

The set of nonnegative integers is indicated by N0 whereas
the first N > 0 nonnegative integers are compactly denoted
by [N ] ≡ {0, 1, . . . , N − 1}. Also used is the Iverson bracket

[condition] ≡

{
1 the condition is true
0 otherwise

. (1)
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am =

{
dfcℓ m = (ℓ, 1) with ℓ ∈ L
0 otherwise

pm(n) =

{
(nr,x,nr,y,nt,x,nt,y)

ℓ

ℓ!

(
1
df

+
(
nf − Nf−1

2

))
m = (ℓ, 1) with ℓ ∈ L

nm

m! otherwise
(10)

There should be no confusion between these bracket notations,
as their arguments are of a different nature. In addition, given
N = (N0, . . . , ND−1) ∈ ZD, we define [N ] ≡ [N0] × · · · ×
[ND−1] where × is the Cartesian product. And, finally, given
n = (n0, . . . , nD−1) ∈ ND

0 and k = (k0, . . . , kD−1) ∈ ND
0 ,

nk ≡ nk0
0 · · ·n

kD−1

D−1

(
n

k

)
≡
(
n0

k0

)
. . .

(
nD−1

kD−1

)
k! ≡ k0! · · · kD−1! |n| ≡

D−1∑
d=0

|nd|.

II. CHANNEL MODEL

Consider Nf equispaced frequencies centered on fc with
normalized interval df , namely fnf

= fc
(
1+ df

(
nf − Nf−1

2

))
for nf ∈ [Nf ]. Transmitter and receiver feature uniform planar
arrays (UPAs) whose dimensionalities are Nt,x × Nt,y and
Nr,x×Nr,y. The antenna spacings along the planar dimensions
are dt,x and dt,y at the transmitter, and dr,x and dr,y at the
receiver. The channel is either LOS, or subject to a specular
reflection. The focus is on near-field situations, with the far
field subsumed as a special case.

With the proviso that the amplitude variations across the
entries are negligible, the channel connecting the (nt,x, nt,y)th
transmit antenna with the (nr,x, nr,y)th receive antenna at
frequency fnf

can be normalized into [4]

h(n) =
[
n ∈ [N ]

]
exp

(
− j

2π

λc
(2)

·D(nr,x,nr,y),(nt,x,nt,y)

(
1 + df

(
nf −

Nf − 1

2

)))
,

where λc is the wavelength corresponding to fc while

n = (nr,x, nr,y, nt,x, nt,y, nf) (3)
N = (Nr,x, Nr,y, Nt,x, Nt,y, Nf), (4)

and D(nr,x,nr,y),(nt,x,nt,y) is the distance between the anten-
nas. Note that the above condition on the amplitudes imposes
limits on the size of the arrays relative to their separating
distance, and on the bandwidth relative to fc.

A. Polynomial Phase Model

As detailed in [4, Eq. 24],

− 2π

λc
D(nr,x,nr,y),(nt,x,nt,y) (5)

≈ 2π
∑
ℓ∈L

cℓ
(nr,x, nr,y, nt,x, nt,y)

ℓ

ℓ!

for some coefficients cℓ. Here,

L = {ℓ ∈ N4
0 : |ℓ| ≤ L} (6)

is the set of degrees in the series expansion, with L regulating
the modelling accuracy; L = 1 and L = 2 correspond to the

common planar and parabolic wavefront models, respectively
[13]. Note that |cℓ| quickly decays as |ℓ| grows.

From (5), the channel entries in (2) at the various frequen-
cies can be approximated with arbitrary accuracy by[

n ∈ [N ]
]
exp

(
2π
∑
ℓ∈L

dfcℓ
(nr,x, nr,y, nt,x, nt,y)

ℓ

ℓ!
(7)

·
(

1

df
+

(
nf −

Nf − 1

2

)))
.

Given am and pm(n) in (10), the above can be recast as[
n ∈ [N ]

]
exp

(
2π
∑
m

ampm(n)

)
, (11)

where the summation is over m ∈ N5
0. (The definition

of pm(n) in the “otherwise” case in (10) is immate-
rial, as the corresponding coefficient is zero; it is how-
ever defined because the sequential algorithm in Sec. IV
requires it.) The channel can therefore be seen as a five-
dimensional polynomial phase signal: its phase is polynomial
in (nr,x, nr,y, nt,x, nt,y, nf). For future use, we also define

M = L × {1}, (12)

which is the total set of polynomial degrees, i.e., the set of
m associated with nonzero terms in the summation in (11).

III. OBSERVATION MODEL

By means of pilot transmissions, orthogonal across transmit
antennas and frequencies, a noisy version of channel entries
can be procured, namely

y(n) =
[
n ∈ [N ]

](
h(n) + wC(n)

)
, (13)

where wC(n)
iid∼ NC(0,

1
SNR ) is additive white Gaussian noise.

Plugging (11) into (13) yields

y(n) ≈
[
n ∈ [N ]

](
exp

(
2π
∑
m

ampm(n)

)
+ wC(n)

)
.

(14)

In the sequel, we explore the possibility of observing y(n)
only over {α◦n′+β : n′ ∈ [N ′]} ⊂ [N ], with ◦ the element-
wise multiplication; this amounts to uniform subsampling over
antennas and frequencies (recall Fig. 1). Crucially, for every
α and β that do not collapse a dimension into a singleton,
pm(α ◦ n′ + β) remains a five-dimensional polynomial.

IV. INTERLUDE: MULTIDIMENSIONAL
POLYNOMIAL PHASE ESTIMATION

This section provides a brief summary of [14], which
establishes the theoretical limits and develops a practical
algorithm for multidimensional polynomial phase estimation.
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Consider a D-dimensional polynomial phase signal given
by
[
n ∈ [N ]

]
ej2πx(n), where

x(n) =
∑
m

ampm(n) (15)

with n = (n0, . . . , nD−1), m = (m0, . . . ,mD−1), and

pm(n) =
nm

m!
+ (lower-degree terms). (16)

The coefficient am vanishes outside the set of polynomial
degrees, M. The noisy observation is

y(n) =
[
n ∈ [N ]

](
ej2πx(n) + wC(n)

)
, (17)

of which (14) is an instance for D = 5. The goal is to estimate
the polynomial coefficients {am} from y(n).

A. Ambiguity

As the observation window is finite, to ensure that the
set of polynomials {pm(n)} is not overloaded, i.e., that the
number of signals does not exceed the dimension of the space,
it must hold that m ⊂ [N ] [14, Sec. II-B]. In addition,
being devoid of injectivity, the exponential function in the
observation model maps distinct polynomials onto the same
signal, making the estimation fundamentally impossible. This
ambiguity can be resolved by restricting the coefficients to

|am| ∈
[
− 1

2 ,
1
2

)
(18)

for all m ∈M [14, Sec. IV-D].

B. Cramer-Rao Bound and Signal Reconstruction

The (m,m′)th entry of the Fisher information matrix,
JN ∈ R|M|×|M|, is given by

8π2SNR
∑

n∈[N ]

pm(n)pm′(n), (19)

as can be verified by replicating the derivation in [14, App. D].
The CRB is the inverse of JN .

Once the coefficient estimates {âm} have been produced,
the polynomial phase signal can be reconstructed as ej2πx̂(n),
where x̂(n) =

∑
m âmpm(n). Denoting the covariance

matrix of the estimator by K, the reconstruction mean-square
error (MSE) satisfies

E

[ ∑
n∈[N ]

|ej2πx̂(n) − ej2πx(n)|2
]
≈ tr(KJN )

2 SNR
, (20)

where the approximation sharpens with the SNR. For an
estimator attaining the CRB, i.e., for K ≈ J−1

N , (20) becomes

|M|
2 SNR

, (21)

which does not depend on the signal dimensionality; it de-
pends on the cardinality of the set of polynomial degrees.

Algorithm 1 Multidimensional Polynomial Phase Estimation
procedure ESTIMATE-COEFFICIENTS(y,M)

if M =
⋃

m∈M[m] then
for m ∈M (in descending order) do

âm ← 1
2π arg(µm(Dmy))

y(n)← y(n) exp
(
− j2πâmpm(n)

)
end for
return {âm}

else
M′ ←

⋃
m∈M[m]

â← ESTIMATE-COEFFICIENTS(y,M′)
â← (EJ ′

NE⊤)−1EJ ′
N â

return {âm}
end if

end procedure

C. Proposed Method

Derived in [14, Sec. IX], Algorithm 1 attains the CRB at
high SNR. In it, Dm ≡ Dm0

0 · · · DmD−1

D−1 where (Dds)(n) ≡
s(n+ ed)s(n) with ed the dth standard unit vector. In turn,

µm(s) = Π

[∑
ℓ

(Πs)(ℓ)

]
(22)

· exp
(
j
∑
n

um(n) arg

(
s(n)

∑
ℓ

(Πs)(ℓ)

))
,

where (Πs)(n) = ej arg(s(n)) for s(n) ̸= 0, while

um(n) =
[
n ∈ [N −m]

](n+m
m

)(
N−n−1

m

)(
N+m
2m+1

) . (23)

Also involved in the algorithm are two additional matrices:
• Fisher information matrix for {am : m ∈ M′}, where
M′ = ∪m∈M[m]. Denoted by J ′

N ∈ R|M′|×|M′|, it
contains JN as a submatrix; precisely, the (m,m′)th
entry of J ′

N is again given by (19), but for m,m′ ∈M′.
• E ∈ R|M|×|M′|, with (m,m′)th entry [m = m′ ∈M].

V. EXTENSION TO PARTIAL OBSERVATION

Let us move on to the partial observation model, which
generalizes the one in Sec. III. The observation through

{α ◦ n′ + β : n′ ∈ [N ′]} ⊂ [N ], (24)

becomes

y′(n′) ≡ y(α ◦ n′ + β) (25)

=
[
n′ ∈ [N ′]

](
ej2πx

′(n′) + w′
C(n

′)
)
, (26)

where

x′(n′) ≡ x(α ◦ n′ + β) (27)

=
∑
m

am pm(α ◦ n′ + β) (28)

=
∑
m

αmam p′m(n′) (29)
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1

2 SNR
tr
(
J−1
N ′,α,βJN

)
=

(N ′)1

2 SNR
tr

((
1

(N ′)1Dα◦N ′JN ′,α,βDα◦N ′

)−1

(Dα◦N ′JNDα◦N ′)

)
(38)

=
(N ′)1

2 SNR
tr

((
1

(α◦N ′)1Dα◦N ′Jα◦N ′Dα◦N ′

)−1

(Dα◦N ′JNDα◦N ′)

)
+ o(1) =

α1

2 SNR
tr
(
J−1
α◦N ′JN

)
+ o(1) (39)

with

p′m(n′) ≡ 1

αm
pm(α ◦ n′ + β) (30)

=
(n′)m

m!
+ (terms with lower degree) (31)

while w′
C(n

′) ≡ wC(α ◦ n′ + β).

A. Ambiguity

Applying the result in Sec. IV-A, the ambiguity can be
eliminated provided that M⊂ [N ′] and

|am| ∈ 1
αm

[
− 1

2 ,
1
2

)
(32)

for all m ∈ M. These ambiguity-free conditions are more
exacting than (18).

B. Cramer-Rao Bound and Its Asymptotic Expansion

Consider JN ′,α,β ∈ R|M|×|M| for the partial observation
model. As N ′ and N grow with a fixed ratio, the (m,m′)th
entry of JN ′,α,β expands as

8π2SNRαm+m′ ∑
n∈[N ′]

p′m(n)p′m′(n) (33)

= 8π2SNRαm+m′
(34)

·
∑

n′∈[N ′]

(
(n′)m+m′

m!m′!
+ (terms with lower degree)

)

= 8π2SNRαm+m′ (N ′)m+m′+1

m!m′!(m+m′ + 1)1
(
1 + o(1)

)
(35)

=
1 + o(1)

α1
· 8π2SNR

(α ◦N ′)m+m′+1

m!m′!(m+m′ + 1)1
. (36)

Introducing a diagonal matrix DN ∈ R|M|×|M| whose
mth diagonal entry is N−m, it can be verified that the
(m,m′)th entries of both 1

(N ′)1Dα◦N ′JN ′,α,βDα◦N ′ and
1

(α◦N ′)1Dα◦N ′Jα◦N ′Dα◦N ′ equal

8π2SNR
1

m!m′!(m+m′ + 1)1
+ o(1). (37)

It follows, via perturbation theory [15, Thm. 2.3.4], that the
(m,m′)th entries of ( 1

(N ′)1Dα◦N ′JN ′,α,βDα◦N ′)−1 and
( 1
(α◦N ′)1Dα◦N ′Jα◦N ′Dα◦N ′)−1 differ by o(1).

C. Reconstruction MSE and Its Asymptotic Expansion

From the property of the trace operator, we have (38)–(39)
where the dependence on β has been relegated to the nuisance
term. The leading term above, in turn, can be factored as

|[N ]|
|[N ′]|︸ ︷︷ ︸

first

· 1

|M|
tr

((
Jα◦N ′

(α ◦N ′)1

)−1(
JN

N1

))
︸ ︷︷ ︸

second

· |M|
2 SNR︸ ︷︷ ︸

third

, (40)

TABLE I
PARAMETERS FOR NUMERICAL EVALUATION.

Parameters Value

Wavelength 1 cm
Frequency spacing 6 MHz
Number of frequency grids 64
Distance between array centers 10 m
Array dimensionalities 16×16 UPA
Array spacings Half-wavelength
Array orientations Uniformly random
L controlling modelling accuracy 2

with the following interpretation:
• The first factor represents the rise in MSE due to the

reduction in the number of observations. This term is
equal to or larger than 1, but it can be counterbalanced
by increasing the power of the |[N ′]| observations, i.e.,
through pilot power boosting.

• The second factor represents the rise in MSE due to the
reduction in window size. As shown in App. A, this term
is equal to or greater than 1 + o(1). For interpolation
specifically, i.e., for α ◦N ′ = N , this term equals 1.

• The third factor is the full-observation MSE, as per (21).
The first factor therefore magnifies the full-observation MSE
in both interpolation and extrapolation. The second factor
further magnifies it in the case of extrapolation.

VI. PERFORMANCE EVALUATION

Let us consider the settings in Table I, whereby the channel
has a dimensionality of 16× 16× 16× 16× 64 = 4 million
entries. The evaluated cases are:

• Full observation over [N ].
• Interpolation from observation over {α ◦ n′ + β :
n′ ∈ [N ′]} with α = (1, 1, 2, 2, 2), β = 0, and
N ′ =

(
Nr,x, Nr,y,

Nt,x

2 ,
Nt,y

2 , Nf

2

)
. This corresponds to

emitting pilots from every other antenna on each planar
dimension at the transmit array, and on every other
frequency band.

• Extrapolation from observation over {α ◦ n′ + β :
n′ ∈ [N ′]} with α = 1, β = 0, and N ′ =(
Nr,x, Nr,y,

Nt,x

2 ,
Nt,y

2 , Nf

2

)
. The number of observations

is identical to that of the interpolation.
The channels are generated via (2), with the exact spher-

ical shape. The per-entry MSEs, obtained numerically, are
presented in Fig. 2. The least-squares estimator under a full
observation serves as benchmark (under partial observation, it
is infeasible as the model is underdetermined); it corresponds
to the noisy observation itself, with an MSE of 1

SNR .
Turning to the wavefront estimator, the full-observation

MSE exhibits a threshold behavior, approaching (21) beyond
it. For growing SNR, the MSE eventually saturates owing

998



0 10 20 30

SNR [dB]

10-9

10-6

10-3

100

103

M
S

E
 p

e
r 

e
n
tr

y
Least squares

Full observation

Interpolation

Extrapolation

Fig. 2. Reconstruction MSE (averaged over 100 realizations of the geometric
parameters and the noise) as a function of SNR.

to the mismatch between the actual spherical shape of the
wavefronts and the polynominal expansion of that shape as-
sumed by the estimator. With interpolation, the pilot overhead
is reduced by a factor of 8, at the expense—from the first
factor in (40)—of a 9-dB penalty relative to a full observation.
To the extent that the pilot power can be magnified, this loss
would be recovered; if the pilot power is boosted by 9 dB,
the loss is fully erased. Put differently, by concentrating the
same pilot energy of the full observation case onto a subset of
pilots, the same channel estimation accuracy can be attained
with a reduced overhead. This directly translates to a higher
spectral efficiency.

In the extrapolation case, the second factor in (40) further
penalizes the MSE. A uniform pilot disposition across anten-
nas and frequencies is thus desirable to prevent this penalty.
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APPENDIX A

From Dα◦N ′D−1
N being a diagonal matrix whose mth

diagonal entry is Nm

(α◦N ′)m ≥ 1, and from App. B,

Dα◦N ′JNDα◦N ′ (41)

= Dα◦N ′D−1
N (DNJNDN )D−1

N Dα◦N ′ (42)
≥DNJNDN . (43)

Hence,
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(44)
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)−1
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·
(
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))
≥ 1

|M|
tr
((
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(α◦N ′)1Dα◦N ′Jα◦N ′Dα◦N ′

)−1
(46)

·
(

1
N1DNJNDN

))
= 1 + o(1), (47)

where the last step follows from the (m,m′)th entries of both
1

(α◦N ′)1Dα◦N ′Jα◦N ′Dα◦N ′ and 1
N1DNJNDN equaling

(37).
APPENDIX B

Consider a positive definite matrix A and a diagonal matrix
D whose diagonal entries are equal to or larger than 1. Then,

{x : x⊤A−1x ≤ 1} ⊂ {Dx : x⊤A−1x ≤ 1} (48)

⇔ {x : x⊤A−1x ≤ 1} ⊂ {x : x⊤(DAD)−1x ≤ 1} (49)
⇔ A ≤DAD, (50)

where the last step follows from [16, Example 2.18].
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