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Abstract—This paper investigates channel estimation for extra-
large multi-input multi-output (XL-MIMO) systems, where the
large antenna array aperture extends the near-field propagation
region, thus leading to a hybrid channel propagation model
that accounts for both far-field and near-field components. The
latter will exhibit a sparse channel representation with a hybrid
sparsity structure, which renders channel estimation extremely
challenging. To this end, the paper proposes a novel approach
that exploits both sparse Bayesian learning (SBL) and the total
variation (TV) penalty with an adaptive weight to incorporate
the hybrid-sparse structure. The proposed tune-free iterative
algorithm dynamically adjusts the regularization weight, effec-
tively distinguishing between block-sparse and individual sparse
components in the hybrid channel representation. Extensive
numerical simulations validate the performance and robustness of
the proposed approach, demonstrating significant improvements
in channel estimation under near-field propagation conditions.

I. INTRODUCTION

Extremely large-scale multiple-input multiple-output (XL-
MIMO) technology has emerged as a fundamental enabler for
next-generation wireless communications [1]. These systems
promise remarkable enhancements in spectral and energy
efficiency, dramatically increased data rates, and highly re-
liable massive access capabilities [2], [3]. While XL-MIMO
communications offer huge benefits, they introduce challenges
from distinctive electromagnetic propagation characteristics.
Importantly, the near-field region can extend hundreds of
meters. This means scatterers and UEs frequently reside within
the BS’s near-field—at distances below the Rayleigh boundary
between near and far-field regions. Under these conditions, EM
wave propagation requires spherical wave models rather than
conventional plane wave approximations.

In realistic XL-MIMO communications environments, chan-
nels typically exhibit hybrid-field characteristics: certain scat-
terers are positioned in the far-field of the BS, while others
are located in the near-field. Consequently, depending on the
spatial distribution of the BS, scatterers, and UEs, both far-
field and near-field propagation paths coexist, collectively
constituting a hybrid-field channel. This distinctive feature
necessitates that channel estimation algorithms for XL-MIMO
systems accommodate both propagation regimes while main-
taining robustness against variable channel conditions.

To fully leverage XL-MIMO systems, accurate CSI estima-
tion with minimal signaling overhead is essential. The channel
sparsity can be exploited to simplify the channel estimation.
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For far-field channels, angular domain sparsity has been
widely exploited to develop efficient estimators, including non-
uniform burst sparse Bayesian learning (SBL) [4], message
passing algorithms [5], and simultaneous orthogonal matching
pursuit (SOMP) [3]. However, near-field propagation presents
unique challenges, as an angular domain transformation fails to
provide highly sparse channel representations, instead yielding
block-sparse representations [3]. To address this limitation,
Cui et al. [3] introduced the polar domain representation,
capturing both distance and angular information, resulting
in significantly improved sparsity. This has led to numerous
solutions from both CS theory [6], [3] and deep learning
approaches [7], [8].

Recent research efforts have increasingly focused on ad-
dressing the hybrid-channel model [9], [10], [11], [12], [13],
[14]. Wei et al. proposed a two-stage OMP algorithm that
sequentially estimates far-field and near-field components,
assuming prior knowledge of the numbers of their respec-
tive path components. To eliminate the necessity for prior
knowledge about the proportion of near-field and far-field path
components, Yang et al. used the norm of residual vector as
a criterion to identify the nature of the propagation path [12].
On the other hand, Yan et al. developed a path classification
algorithm based on the angular beam-width of the channel to
distinguish between far-field and near-field components. Once
the path type has been detected, both approaches apply an
OMP-based method to estimate the channel. While the explicit
knowledge of the channel composition is not required, the
channel estimation quality is limited by the typically inferior
performance of the OMP-based algorithms compared to the
Bayesian-based solutions [15].

This paper addresses the channel estimation problem in
XL-MIMO systems from a Bayesian perspective. Specifically,
we adopt the angular domain transformation of the channel,
leveraging its hybrid sparsity structure, namely block sparsity,
representing the near-field components and individual spikes
corresponding to the far-field components. To handle this
hybrid sparsity structure, we formulate the problem as an SBL-
based optimization problem augmented with a prior function
that captures the essence of the hybrid-sparsity model. The
proposed formulation combines two regularization terms: i)
total variation (TV) to promote block sparsity and ii) log-
determinant (log-det) regularizer to encourage individual spar-
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Fig. 1: The hybrid-field communication system for XL-MIMO.

sity. Additionally, an adaptive regularization mechanism is
introduced to distinguish between different sparsity profiles.
Simulation results demonstrate that the proposed channel
estimation quality across various scenarios compared to the
state-of-the-art benchmarks.

II. SYSTEM MODEL

This paper considers a single-cell network comprising a
multi-antenna base station (BS) equipped with an extremely
large-scale uniform linear array (ULA) equipped with N
antennas serving K single antenna UEs.

A. Channel Model

The Rayleigh distance, which defines the boundary between
far-field and near-field regions, is given by Dgayleich = )%2,
where D is the array aperture and A\, denotes the carrier wave-
length. Due to the large aperture of the XL-ULA, the Rayleigh
distance can extend to hundreds of meters. This distinctive
characteristic means that both scatterers and connected UEs
can be located in either the near-field region or the far-field
region, leading to different signal propagation characteristics.
Subsequently, the hybrid channel model can be given as

h =h¢+h,. (D

The hybrid channel model (1) comprises both far-field and
near-field components, each with dynamically varying param-
eters, making the channel conditions highly variable. Indeed,
since the wavefront characteristics differ significantly between
the two regions—approximately planar in the far-field and
spherical in the near-field—the array responses for each region
must be modeled separately.

1) Far-Field Channel Model: Assuming that the UE and
the scatterers are static and located in the far-field region of
the BS, the multi-path far-field channel response is modeled
based on the planar wavefront assumption as

1
he =/ 5 2 992 (é0)- 2)

where P; denotes the the number of far-field paths, while
gp, and ¢, represent the complex path gain, and the angle

associated with the pth path, respectively. The steering vector
as() is given as [16]

1 L
af ((bp) = ﬁ [1, 6_2Jﬂ81n(¢p), -
where d represents the normalized spacing between the adja-
cent antenna elements at the BS.
2) Near-Field Channel Model: When the UE is located in
the near-field region of the BS, the channel response is usually
assumed to follow the spherical wavefront assumption [3] as

P
&
h, = \/;n; gpall(¢l7rp)’ ®)

where P, denotes the the number of near-field paths, and
r, denotes the distance associated with the pth path to the
reference antenna at the BS, respectively. The steering vector
ay ((bp,rp) is given as

a, (¢)p, rp): [1, e_jkc(Tgl)_TP), ce

27 fe
c

—2j(N—1)sin(¢p)]T,

ik (PN 9T
e J o P p)] ,

where k. , where f. denotes the carrier central
frequency and rl(n) = \/7“2 + 02d? — 2r10,df) denotes the
distance from the nth scatterer to the nth BS antenna, and

Un:wwithnzl,...,NB].

B. Problem Formulation

In the down-link channel estimation, the BS transmits
known pilot signals to the UEs for T time slots. We assume
that orthogonal pilots are adopted and consider an arbitrary
UE without loss of generality. The BS transmits a pilot signal
w, at time instance ¢ to the UE, subsequently, the pilot signal
is given as

y=h'w, +n,, t=1,-.. T 4)

Let us denote the received signal over 7 symbols as

y = [y1,---,yr])T , and define the pilot matrix W =
[wi,...,wp|T € CT*N, and the noise vector n =
[n1,...,nt|T € CT ~ CN(0,02I1). Subsequently, we can

write the received signal as
y=Wh+n, 5)

Based on (5), the channel estimation problem is convention-
ally formulated as an inverse problem to recover h from the
received pilot signal y. To minimize the signaling overhead,
the pilot length is deliberately chosen to be significantly
smaller than the number of the BS antennas, i.e., T < N.
This constraint transforms the channel estimation in (5) into
an ill-posed problem. However, owing to the channel sparsity
under appropriate transforms [4], [9], channel estimation has
been effectively formulated as a sparse recovery problem.
The existing works rely heavily on the channel sparsity to
design compressed sensing algorithms for channel estimation.
However, the existing solution applies sparsifying transfor-
mations to far- and near-field paths independently, resulting
in an incompatible hybrid sparsity pattern. To address this,
we propose a unified representation that enables an efficient
solution for hybrid channel estimation in XL-MIMO.
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Fig. 2: Angular Domain Representation for a channel with
Pr=2and P, = 2.

III. PROPOSED BAYESIAN SOLUTION

Aiming at a solution under the CS framework, we adopt the
angular domain representation of the channel and rewrite the
received signal as

y=WFz+n=W¥z+n. (6)

where h = Fz such that F € CV*Y denotes the unitary
Fourier transform matrix and z € CV is the sparse angular
representation vector of the channel h in the angular domain.
Therefore, based on (6), the hybrid near/far-filed channel
estimation problem can be converted into a sparse signal
recovery problem whose objective is to recover the sparse
vector z from the noisy measurement y.

To solve the above problem within a Bayesian framework,
we construct a probabilistic model of the inference problem
by treating the unknown vector z as a random variable with an
associated probability density function (PDF). For analytical
tractability, we model z as a zero-mean multivariate complex
Gaussian distribution:

2 ~ CN(0, diag(a)), ™)

where a = [ay,...,an]T € Rf represents the hyper-
parameter vector controlling the variance of each element
in z. Due to the additive Gaussian nature of the noise, the
posterior density p(z|y; ) is also Gaussian, given by:

p(zly; @) ~ CN(p, %), (8)
where
1 e n 1 _q . N\
p=—53IT%, Z= (—2\11 W + diag(a) ) . ©)
g o

It is evident from (9) that for known values of a and W, the
maximum a posteriori estimate of z is . Therefore, the aim of
the proposed solution is to estimate the hyperparameter vector
o Inspired by the SBL approach, we obtain the MAP estimate
& by maximizing the posterior density function p(ay) with
respect to o, resulting in the non-convex problem:

& = argmaxlogp(aly)
a>0
= argminlog det (Zy) + y"Sy 'y — logp(a),
a>0
(10
where B, = 021 + Wdiag(a) " and logp(e) is a prior

function that should be ideally designed to express the prior
belief on the structure of the hyper-parameter vector cx.

This paper builds upon the approach used in our preliminary
work [17] to tackle the channel estimation problem in hybrid-
channel XL-MIMO systems. For completeness, we provide a
comprehensive explanation of the proposed solution. First, we
discuss the design of the prior function p(a), followed by
a detailed derivation of the hyperparameter vector o estima-
tion using the SBL framework and the Alternating Direction
Method of Multipliers (ADMM) algorithm.

A. Design of p(ax)

Since both near-field and far-field components are present
in the signal, z exhibits a hybrid sparsity pattern. Specifically,
z consists of isolated spikes corresponding to far-field compo-
nents and a non-uniform block of nonzero elements associated
with near-field components, as shown in Fig. 2.

To capture the hybrid structures effectively, the prior func-
tion p(cx) needs to be designed to enforce an estimate con-
sisting of both isolated spikes and nonzero element blocks.
The current Bayesian approaches include hard coupling of
hyperparameters [18] and TV penalties [19]. While effective
for block sparse recovery with unknown block partition, it
struggles with hybrid sparse patterns as it penalizes the tran-
sition between every pair equally. To this end, we utilize the
following hyper-prior function:

N
—logp(a) =Y > Bijllog(es) —log(ay),

i=2 jeQ;
where €); is the set of neighboring elements of the z;, and
Bi; € [0,1] represents an adaptive regularization weight,
which will be defined later. The objective of (11) is twofold:

(1)

 Unlike [19], where the TV penalty is applied only to con-
secutive elements, our approach extends it to a broader
set of adjacent neighbors. Thus, enhancing the model’s
adaptability to the signal structure while effectively cap-
turing local dependencies among its elements.

o By incorporating an adaptive regularization weight, the
proposed solution can better explore the hyper-parameter
space, allowing it to distinguish between nonzero blocks
and isolated nonzero elements more effectively.

B. Hyper-Parameters Inference

Note that the optimization problem in (10) presents chal-
lenges due to its non-convex nature, which stems from both
the log-determinant term and the prior distribution p(e). To
overcome this complexity, this paper utilizes the expectation
maximization (EM) approach [20] that enables efficient solu-
tion of the equation. The EM-SBL iterates between two steps,
namely, the E-step and the M-step.

a) E-step: Given the estimated a!~1), the E-step is
evaluated at the [th EM iteration by averaging the joint
posterior distribution p(y,z, ) with respect to the hidden
variable z as

1002



Ly @
Q(al]a!'™1) = B,y pac-n) | logp(y|z)p(z|a)p(c)

(®)
= IEp(Z\y al-1) log p(z|ar) + log p(a)

Z [ (lfl)
log(a

+logp(a),

(12)
where 5!V = ng;l) + 168792, (a) follows from the
factorization of joint distribution & — z — y and (b) follows
from the prior model in (7) and the fact that p(y|z) does not
depend on «.

b) M-step: The hyper-parameter « is updated as follows

& :argmin—Q(a(”\a(l*l))
N =D N -1
_argmanlog(al 4+ a +ZZﬁzj|log a;) — log(aj)l,
@ =1 1=2j=1
(13)

As mentioned earlier, the role of 3; ; is to adjust the penalty
applied to the pair {c;, a;} as follows

-1 -1 e .
g0  Jexp (=og(ai"™") ~log(a) "), if j €
J 0, otherwise.
(14)

The key rationale behind this choice of 3; ; can be summa-

rized as follows:

e When z; and z; share the same sparsity profile, 3; ; is set
high to reinforce the smoothing effect of the TV penalty,
promoting a structured block-sparse pattern.

o When z; and z; exhibit different sparsity profiles, setting
Bi; = 0 effectively decouples them in the optimization
process, allowing independent updates and preserving
their distinct characteristics.

C. ADMM solution for the M-step

Note that the problem (13) is non-convex, it is possible to
utilize decomposition techniques and ADMM to obtain closed-
form solution to (13) as we describe next!.

First, we transform (13) into bi-convex optimization prob-
lem by introducing the auxiliary variable C € RV*V as

N i—1
argmanlog (o) +f+ZZ|C”|

=2 j=1
s.t. Cw = &J(log(al) log(a])) Vi, .

Subsequently, we write the augmented Lagrangian function as

(15)

(e, €) Zlog(al :
S (16)
+ZZ[ICH\+ Cig =i+ 222,
1=27=1 P
where @; j = ﬂi,j<log(ai) — log(aj)?, A € RYXN denotes
the dual variable matrix, and p is a real small positive variable.

from here onward, we will omit the EM iteration index (1) for sake of
presentation clarity.

1) a-update: First, we update each element of the hyper-
parameter vector sequentially as

Oé,(kﬂ) = argmin log(o;) p Z ||a(k) Bi.; log(a)||?
i JEQ
p (k) j<i s
a 2
D) > lag” + Bijlog(aq)|* + =
J>1
- (17)
where a C( ) 4 Bi.; log(a (k)) Ipl and a(k) C](ﬁ) _

<1c>
B, log(a (k)) 4 A Ap approximate solution to (17) is given

as
-1
>oat- . al)

ot = Sz‘<1+ﬂ > Bij—
JEQ;, <1 JEQ,j>1
(18)

JEQ;
2) C-update: Note that for solving (16), each element C; ;
can be updated separately as

. . A(F)
CEFD = argmin |G | + 2 a2,

(2%

||CI g (19)

ZJ

where dgiﬂ) = Bi’j(log(az(-kﬂ)) - log(ag-kﬂ))), leading to
the soft-thresholding solution [21] as

k+1 k+1 )\(k)
CZ( J+ ) = max (d§7j+ ) _ %, 0) (20)
3) A-update: Finally, the dual variable is update as
)\Efvy+1) _ )\Effj) +p(Ci(fj+1) _ a2f€j+1))7v7;7j 1)

IV. SIMULATION RESULTS

This section presents simulation results to assess the pro-
posed solution’s performance. We set the number of BS
antennas N = 512, the carrier frequency f. = 30 GHz,
the number of total paths P = 8. The angle of arrival
and the distance between the BS and the UEs are randomly

drawn from uniform distribution as 6 ~ U(—%,%) and

3'3
r[m] ~ U(10, 150), respectively. The pilot matrix W is drawn
from an i.i.d. complex Bernoulli distribution with normalized

columns. Performance is assessed using the normalized mean

E[|h—h|?]
square error (NMSE), defined as R

The proposed method is compared against five benchmark
approaches: far-field OMP, near-field OMP [3], hybrid-field
OMP with unknown path partition [12], hybrid-field OMP with
known partition [11], and non-uniform burst SBL [4] 2,

Fig. 3 (a) presents the NMSE of the algorithms as a function
of SNR, with 7" = 128, P = 4, and P, = 4. Notably,
the proposed algorithm achieves the best channel estimation
accuracy across the entire SNR range, outperforming the next-
best algorithm by approximately 2-3 dB. The results also
indicate that algorithms designed for hybrid-channel models
outperform those based on a uni-field assumption.

2The simulation code and implementation details for the proposed solution
are available on the following GitHub repository
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Fig. 3: Channel estimation performance in terms of NMSE versus

and far-field components (7).

Fig. 3 (b) illustrates NMSE versus received signal length (7)
at SNR = 8 dB. Again, the proposed algorithm consistently
demonstrates superior performance, significantly outperform-
ing all benchmarks. Moreover, with a 25% shorter pilot
length (T = 192), it achieves the same performance as the
non-uniform burst algorithm at T = 256, yielding a 25%
improvement in pilot efficiency.

Finally, we evaluate algorithm performance under vary-
ing proportions of near-field and far-field components, with
SNR = 8 dB and T = 128. Let us define v € [0,1]
that denotes the proportion of the near-field and far field
components such that P = |yP] and P; = P—P;. The results
show that as < increases—indicating a channel dominated
by far-field components—performance improves across all
algorithms. This is attributed to the increased sparsity of
the far-field representation compared to the near-field. Once
again, the proposed algorithm exhibits superior accuracy and
robustness across different channel conditions.
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VI. CONCLUSION

In this paper, we deployed an adaptive SBL-based hybrid-
field channel estimator with a flexible prior function that
effectively accommodates various hybrid-field conditions. Fur-
thermore, unlike existing works, the proposed solution does
not require any knowledge of path numbers or far-field/near-
field component proportions. Extensive simulations demon-
strated significant performance gains compared to state-of-
the-art benchmarks, highlighting the practical value of our
approach for next-generation communication systems.
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