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ABSTRACT

Functional Magnetic Resonance Imaging (fMRI) captures a tem-
poral sequence of 3D Ty weighted magnetic resonance volumes
to study brain activity at rest or during task performance. Conse-
quently, imaging at the required high temporal and/or spatial resolu-
tion necessitates highly undersampled k-space acquisitions, making
the reconstruction of these volumes severely ill-posed. Yet, due to
the lack of ground truth in brain activity, evaluating the impact of
reconstruction methods on the statistical analysis of fMRI remains
an open problem. In this work, we leverage the SNAKE-fMRI sim-
ulator to generate realistic artificial brain activity over a 3D brain
template and synthesize the corresponding k-space data, providing a
reference ground truth for evaluating reconstruction methods in the
fMRI statistical analysis stage. Additionally, we introduce a Plug-
and-Play (PnP) approach for image reconstruction that relies on an
implicit 3D deep denoising prior. In a benchmark against com-
pressed sensing strategies, we show that PnP-based reconstruction
strategies produce high2-quality images but suffer from a loss in sta-
tistical sensitivity compared to compressed sensing reconstructions
in simulated fMRI studies when a ground truth is available.

Index Terms— functional MRI; Plug-and-Play; Compressed
Sensing

1. INTRODUCTION

Functional Magnetic Resonance Imaging (fMRI) is a key neu-
roimaging technique to probe brain activity non-invasively. It relies
on the blood oxygen level-dependent (BOLD) contrast as an indirect
measure of neural activity due to neurovascular coupling [1]. fMRI
data consists of a sequence of 3D T3 weighted volumes captured
with spatial resolution at the millimeter level and second-level tem-
poral resolution. The BOLD signal is sensitive to changes in blood
oxygenation, which standard MRI scanners can detect. More specif-
ically, as neurons activate and consume more energy and oxygen, the
vascular system provides local fresh blood in return with a higher
concentration of oxyhemoglobin, which can be detected through an
extended relaxation parameter 75 and thus a transient increase in
the magnitude of the MRI signal.

fMRI data acquisition consists of several steps. First, raw data
are acquired in the spatial Fourier domain (k-space) while the vol-
unteer is lying on the scanner, either performing some task or stay-
ing still at rest. These data are then reconstructed into a temporal
sequence of 3D brain volumes (often called images), followed by
pre-processing steps to correct for artifacts such as motion and off-
resonance effects (blurring artifacts and signal loss) due to B0 inho-
mogeneities. Finally, statistical analysis is performed to detect sig-
nal variations associated with the experimental paradigm, enabling
the investigation of neural correlates of specific cognitive functions.
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Ensuring high-quality processing at each stage is, in turn, crucial to
obtaining reliable statistical inferences on neural activity.

During recent decades, the fMRI pipeline has continuously
evolved, benefiting from advances in anatomical MRI acquisition
and reconstruction, such as parallel imaging (Cartesian acquisi-
tions) [2], compressed sensing (non-Cartesian acquisitions) [3]—
[5], and more recently, deep learning for MRI reconstruction [6]—
[9]. These techniques have significantly allowed MR physicists to
reach a higher spatial resolution in decent scan times through more
prominent undersampling factors in k-space, mainly using 3D non-
Cartesian trajectories (e.g., 3D SPARKLING)[10]-[12] to ensure
isotropic resolution. However, the larger the undersampling, the
more ill-posed the image reconstruction problem.

In fMRI, as time becomes an additional dimension in data ac-
quisition and image reconstruction, strategies must be carefully tai-
lored to balance spatial resolution, temporal resolution, signal-to-
noise ratio (SNR), and brain coverage. High SNR can be secured
by performing scans at ultra-high magnetic field (7Tesla or above).
However, the current race towards higher spatial and temporal res-
olution, ultimately to differentiate brain activity patterns across cor-
tical layers (e.g., at S00um resolution) [13], [14] or to uncover fast
hemodynamic responses (e.g., at 0.5 Hz) [15], remains an unmet
challenge for a complete brain coverage. An additional difficulty is
the substantial variability of fMRI responses (evoked brain activity)
across individuals, which impedes the optimization of this acquisi-
tion/reconstruction pipeline in vivo in healthy volunteers as a ground
truth is missing.

We propose optimizing the data acquisition/image reconstruc-
tion pipeline in silico using the SNAKE simulator [16] to overcome
this issue. SNAKE allows us to synthesize realistic artificial fMRI
data under various acquisition setups and, hence, to select the
best according to different metrics, namely image quality and the
statistical sensitivity/specificity compromise, which are not neces-
sarily aligned. In this work, we introduce a novel learning-based
prior, based on a 3D implicit denoiser, injected into a Plug-and-
Play (PnP) method for fMRI image reconstruction and compare the
performance of deep learning and variational methods for image
reconstruction on both image quality and statistical criteria.

The remainder of this paper is structured as follows. First, we
describe the simulation setup to produce realistic and accelerated
artificial task-related fMRI data in k-space. Then we provide some
background on PnP methods based on denoising priors and justify
our choice of neural network architecture. Next, we introduce our
benchmark that compares zero-filled adjoint Fourier, Compressed
Sensing, and deep learning for fMRI image reconstruction on a
frame-by-frame basis. Finally, we present and discuss our bench-
mark results by assessing each approach’s ability to recover decent
image quality and good statistical performances to detect evoked
brain activity.
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(a) Brain Phantom on a field of view of (192,192,144) mm with the 7% -
weighted contrast prescribed by TR, TE, FA. Activated region in the occip-
ital cortex in red.
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(b) Example of a block design paradigm for fMRI.

Fig. 1: Brain Phantom used in our simulation (top) and average
BOLD response (simulated and measured) in the ROI (bottom).

2. MATERIALS AND METHODS

2.1. Acquisition simulation setup

To generate realistic artificial fMRI data in both the time-image and
k-space domains, we use the SNAKE simulator [16]. We first con-
sider a brain phantom, depicted in Fig. 1(a), with a true T -weighted
contrast. To achieve this, we simulate a 3D Gradient Recall Echo
acquisition (repetition time 7R = 50 ms, echo time 7E = 22 ms,
flip angle FA = 12°) using an 8-channel phased array coil (L =
8). Next, we simulate BOLD activity according to the block de-
sign paradigm (black trace in Fig.1(b)), alternating 20 seconds-long
blocks of visual stimulation and rest in the primary visual cortex
based on the Harvard-Oxford atlas. The brain region eliciting the
evoked activity is delineated by the red contour in Fig.1(a). The mag-
nitude of the BOLD effect is defined by multiplying the fuzzy gray
matter tissue mask voxel-wise with the mask of the primary visual
cortex. In each voxel, we then generate the simulated BOLD time
series by scaling the block-design regressor (black trace in Fig.1(b))
with the magnitude of the BOLD effect and convolving the result
with a canonical hemodynamic response, resulting in the orange
trace in Fig.1(b). The stimulation lasts 7' = 300 sec in total (one
half shown in Fig.1b.

To simulate a realistic MR acquisition process, we consider the
presence of N tissue classes in the 3D brain phantom. This means
that we model tissue-specific parameters namely tissue proportion
(w;(r)) N per voxel 7, contrast ((14;)~% in the prescribed GRE
sequence conﬁguratlon and transverse relaxation times (7%, Z)N“*l to
accurately simulate a spatially varying MR imaging contrast, em-
bodying T5-decay. Then, regarding the simulation of fMRI data
in k-space, we use a stack of in-out spirals as sampling trajectories
(ks (t))1<s<ngy fOr nshots consecutive shots of duration TR, at each
timestep 0 < ¢t < T'. The center of each spiral is placed at TE to op-
timize the T% contrast. Since we start with a standard 3-mm isotropic
resolution, full k-space coverage at the Nyquist rate typically con-
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Fig. 2: Stack of spirals used to sample a single frame in 3D k-space.
This pattern is repeated over time to collect the full fMRI sequence.

sists of 48 spirals, resulting in a volumetric TR (TR,) of 2.4 sec.
Here, as we are interested in high temporal resolution (TR, = 0.75
seconds), we subsample the k-space data by a factor of 3.2 along the
stacking dimension k. (see Fig. 2), which consists of retaining only
ny = 15 k-space planes (3 central planes constantly sampled and 12
randomly picked up). As a consequence, this procedure produces an
acceleration factor of 3.2 and T/T' R, = 400 fMRI scans. In this
context, the simulated data yg,s(t) for the s-th shot on the ¢-th coil
follows an extended Fourier model:
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where €, ~ N(0,X),¥¢ = 1,..., L is the thermal noise with
homoscedastic coil covariance matrix X defined as follows:
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where SNR refers to the signal-to-noise ratio. Importantly, the
BOLD activation is updated at every unitary 7R, modulating the
contrast y; within a designated Region of Interest (ROI), referred to
as the Activation ROI tissue. This region’s intensity varies over time
according to the prescribed BOLD effect for a given shot ¢, with
a modulation amplitude of 2.5% relative to the baseline contrast
(rror = 0.025 - h(t), where h(t) is the prescribed hemodynamic
response. The maximum variation of y¢ s(¢) due to the BOLD effect
is therefore impacted similarly. More details on the physics and
computational aspects of the simulation process are available in
[16].

Once all shots y: = (ye,s(t))s,¢ are sequentially generated ac-
cording to Eq. (1), each group of n; consecutive shots is combined to
reconstruct a single volume, forming a frame in the fMRI sequence.
It should be noted that information about the different tissue types
or relaxation parameters is not available during the reconstruction
stage. Eventually, the acquisition model for a single sought image

x4 writes:
L

Y = Z Fo,Sex: + €0 3)

=1

where Q; = {ks | tny < s < (t + 1)ny} gathers all the shots of
the t-th frame.
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2.2. Reconstruction with PnP prior

Traditional methods for solving (3) often propose to estimate each
x+ by solving a regularized minimization problem of the form

x = argmin f(z, yt) + )‘T(w)v C)]

zeCN

where f(-,y:) is a data-fidelity enforcing functional (ensuring that
the solution &, satisfies (3)), 7: C¥ — R ensures regularity of the
solution, and A > 0 is a regularization parameter. Here, f is chosen
as f(x,y:) = %Zle | Fo,Sex — yu,¢||3, while r is chosen to
promote the sparsity of the reconstruction in an appropriate domain.
The minimizer Z; is then computed with an optimization algorithm,
typically involving proximity operators and/or gradients of f and r
[17].

In this context, plug-and-play (PnP) algorithms propose to re-
place r in (3) with an implicitly defined regularization, typically
through a deep neural network (DNN) trained as a denoiser. In
practice, this operator replaces the proximity operator of r that ap-
pears in the minimization algorithm to solve (4). Following [18], we
propose to perform the image reconstruction with a preconditioned
Half-Quadratic Splitting (HQS) algorithm. More precisely, given a
preconditioning matrix P and a number of iterations K, our recon-
struction algorithm for estimating Z; reads, for 0 < k < K,

U, = proxif(mt,k)

PnP-HQS
@t k+1 = Doy, (Ut i), (PnP-HQS)

where prox,}:  1s the proximity operator of ~y f in the metric induced
by P, (ok)i<k<k is a decreasing sequence of noise levels, and
where we set 0 = ATyt. Interestingly, when P = 1d, (PnP-HQS)
reduces to the DPIR algorithm from [19] that has shown state-of-the-
art performance in low-level vision tasks. In our experiments, we set
v =13, 01 = 00", withop = 4-107% and £ = 0.97, and K = 20.

Here, we consider the “F-1” preconditioner P = 2 — aA™ A
introduced in [20], where A = Fqo, ® Se, and « is the Lipschitz
constant of V f. Although other PnP algorithms may be chosen, two
main observations motivate our choice: First, due to its annealing
strategy of the parameters, it is fast and does not show the instabili-
ties that other PnP algorithms may show [18]. Second, introducing
the preconditioning matrix P ensures a robust reconstruction despite
the high ill-conditioning of F, in non uniformly sampled settings.

2.3. Neural network architecture

We next detail the chosen architecture for our denoiser D,. In
this work, we consider complex volumetric data for (@¢)i1<¢<7.
More precisely, for all ¢, x; can be represented as a tensor of shape
(2, D, H, W), where the first two dimensions account for real and
imaginary parts of the data. Consequently, the denoiser to be con-
sidered should be able to handle complex volumetric images. We
therefore propose to extend the 2D bias-free DRUNet architecture
from [19] into a 3D architecture by replacing the 2D convolution
layers with the 3D convolutional layers, with 2 input channels.
The resulting architecture enjoys the same theoretical properties
as the original 2D architecture, e.g. its homogeneous property
Dao(ay) = aDs(y) for any o > 0, ensuring good generalization
abilities for this denoiser over images with various intensity ranges.

Table 1: Quantitative metrics on image quality and statistical per-
formances. SSIM and PSNR scores are averaged over all frames.
The balanced accuracy (BACC) is computed with a threshold set to
p < 10™*and AUC and BACC were computed with respect to vox-
els with at least 50% of gray matter.

Name PSNR SSIM tSNR AUC BACC
— CG 18.560 0.367 nan 0.782 0.754
CS 18.748 0.459 6.706 0.758 0.948
—— HQS-F1 19.338 0.577 6.286 0.574 0.891

3. EXPERIMENTAL RESULTS

3.1. Benchmark of MR image reconstruction methods

We compare our reconstruction method with a wavelet-based com-
pressed sensing reconstruction as implemented in pysap-mri [21].
More precisely, we use (4) with r(x) = ||Pa||1, where U is a
wavelet decomposition. Eq. (4) can be efficiently solved with a
standard forward-backward algorithm [17]. We also provide com-
parisons with the pseudo-inverse A'y;, obtained by running a
conjugate gradient (CG) algorithm on f(x, y;) for each frame ¢.

3.2. Training

We train our model on the Calgary-Campinas dataset [22]. We
extract complex images by performing an inverse FFT on the raw
Cartesian data in the k-space that will serve as our reference and
combine multichannel inputs into a single 3D complex-valued vol-
ume using a virtual coil combination method [23]. We train our
model using the Adam optimizer with a 10~* learning rate. Pre-
training is performed for 200k iterations on randomly extracted
patches of size 64 x 64 x 64 with a batch size of 12. The model is
then fine-tuned in larger patches 128 x 128 x 128 with a batch size
of 2 for 100k iterations.

3.3. MR image reconstruction results

We now present the main results of our study. First, we compare the
image quality of reconstructed fMRI sequences using CG, CS, and
PnP with the ground truth using PSNR and SSIM scores in Tab. 1.
In Fig. 3, we present the three reconstruction methods considered.
The background image of each case corresponds to the first volume
reconstructed in the fMRI sequence, and the selected cuts maximize
the number of voxels displayed for the target ROI. The learning-
based PnP-HQS reconstruction provides the best image quality. In
contrast, the wavelet-based CS reconstruction provides lower image
quality (0.12 lower SSIM scores) and embodies a few spiral aliasing
artifacts. However, both regularized methods outperformed the clas-
sical CG reconstruction, which shows detrimental aliasing artifacts
in the frontal and occipital regions.

3.4. Statistical analysis of fMRI sequences

Once reconstructed, we performed the regression analysis of fMRI
signals using a simple general linear model (GLM) consisting of the
regressor shown in orange in Fig. 1b and a constant baseline. The
goal is to detect voxels eliciting evoked activity that correlates with
the experimental paradigm. Then, z scores were calculated as the
ratio of estimated regression weighted divided by the square root
of the residuals in the GLM. Finally, z scores were thresholded at
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Fig. 3: Z-score maps for CG/CS/HQS-F1 reconstruction methods (from left to right). the target ROI (voxel with at least 50% of gray matter,
and belonging to primary visual cortex) is delineated in cyan. The complete anatomical ROI (occipital cortex) is contoured in green.
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Fig. 4: Precision-Recall characteristic curve for the different thresh-
olds of gray matter considered in the ROI.

a p-value of p = 0.001 uncorrected for multiple comparisons to
assess each reconstruction pipeline’s statistical performances (sen-
sitivity/specificity trade-off) and analyze to what extent the original
ROI was recovered by computing scores and confusion metrics (true
positive, false positive, etc.). As the ROI is small compared to the
brain volume, we used precision and recall (true positive rate) to an-
alyze the distribution of detected voxels.

Furthermore, voxels located in ROI have a spatially varying pro-
portion of gray matter (GM), which directly impacts the magnitude
of the BOLD effect in a proportional way. Thus, we considered dif-
ferent thresholds of z scores to define true positives. In Fig. 4, we
present three different classification results for different GM propor-
tions (voxels with respectively at least 10%, 50%, or 90%) in the re-
spective dotted, dashed, and solid lines. Last, in Tab. 1, we compare
the statistical performances for the CG/CS/HQS-F1 methods. As the
CG method gives the highest AUC score while reporting the low-
est image quality, this indicates a poor point spread function (PSF),
which eventually blurs the true activations and produces false pos-
itives in addition to true positives. This is confirmed in Fig.4 by
lower precision and higher recall scores for CG reconstruction com-
pared to CS and HQS-F1. In contrast, CS reconstruction reports the
best AUC/BACC and highest Precision/Recall scores despite alias-
ing artifacts and poorer image quality compared to HQS-F1. Hence,
CS achieves the best compromise between image quality and sta-
tistical performance. The lower performance of the learning-based
PnP method might be due to the fact that the 3D DRUNet has been

trained on 1-mm isotropic images, while fMRI images were gen-
erated at 3-mm. Hence, additional fMRI simulations operating at
1-mm isotropic are necessary to confirm this finding soon, or in-
stead to demonstrate the superiority of learning-based reconstruction
methods, which have been trained at the target spatial resolution.
However, because of their computational cost, these numerical ex-
periments and the corresponding results were not available prior to
submission.

4. CONCLUSION AND PERSPECTIVES

In this work, we studied how a learning-based prior embedded in
a PnP method impacts image reconstruction in 3D non-Cartesian
high-temporal fMRI. To do so, we used the SNAKE-fMRI simulator
to draw preliminary conclusions in a fully controlled environment.
Although image quality is significantly improved using the learning-
based PnP method compared to standard techniques (CG, CS), our
findings suggest a compromise between image quality and statistical
performance in terms of true positives (recall)/false positive (preci-
sion) balance that is currently optimized by CS reconstruction. This
could result from training a denoiser on a dataset of 77 weighted
MR images, while the target application is fMRI and involves a T5
weighed contrast. Furthermore, the resolution change between the
training set and the test set could also explain the loss in statistical
performance. we observed with PnP.

Future work will therefore focus on simulating scenarios at
matched spatial resolution (i.e., 1-mm isotropic) and possibly on
matching the contrasts between the training and test stages. This
extension is computationally and memory challenging.

For the sake of reproducible science, detailed settings, imple-
mentations, and reproducible benchmark are available at https:
//github.com/paquiteau/eusipco-pnp-fmri. The
study was carried out using the deepinv! and SNAKE-fMRI ? Ii-
braries.

5. COMPLIANCE WITH ETHICAL STANDARDS

This is a numerical simulation study for which ethical approval was
not required.

6. ACKNOWLEDGMENTS

This work was granted access to IDRIS’ HPC resources under the al-
location 2023 AD011011153R3 made by GENCI. The authors have
no relevant financial or non-financial interests to disclose.

"https://github.com/deepinv/deepinv
2https://github.com/mind-inria/snake-fmri

1018



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

(14]

S Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank, “Brain mag-
netic resonance imaging with contrast dependent on blood

oxygenation.,” Proceedings of the National Academy of Sci-
ences, vol. 87, no. 24, pp. 9868-9872, Dec. 1990.

M. A. Griswold, P. M. Jakob, R. M. Heidemann, et al.,
“Generalized autocalibrating partially parallel acquisitions
(GRAPPA),” Magnetic Resonance in Medicine, vol. 47,
no. 6, pp. 1202-1210, 2002.

M. Lustig, D. Donoho, J. Santos, and J. Pauly, “Compressed
Sensing MRL,” IEEE Signal Processing Magazine, vol. 25,
no. 2, pp. 72-82, Mar. 2008.

N. Chauffert, P. Ciuciu, J. Kahn, and P. Weiss, “Variable Den-
sity Sampling with Continuous Trajectories,” SIAM Journal
on Imaging Sciences, vol. 7, no. 4, pp. 1962-1992, Jan. 2014.

L. El Gueddari, C. Giliyar Radhakrishna, E. Chouzenoux,
and P. Ciuciu, “Calibration-less multi-coil compressed sens-
ing magnetic resonance image reconstruction based on oscar
regularization,” Journal of Imaging, vol. 7, no. 3, p. 58, 2021.

H. K. Aggarwal, M. P. Mani, and M. Jacob, “MoDL: Model
Based Deep Learning Architecture for Inverse Problems,”
IEEE Transactions on Medical Imaging, vol. 38, no. 2,
pp- 394405, Feb. 2019. eprint: 1712.02862 (cs).

K. Hammernik, T. Klatzer, E. Kobler, et al., “Learning a vari-
ational network for reconstruction of accelerated MRI data,”
Magnetic Resonance in Medicine, vol. 79, no. 6, pp. 3055—
3071, 2018.

M. J. Muckley, B. Riemenschneider, A. Radmanesh, et al.,
“Results of the 2020 fastMRI Challenge for Machine Learn-
ing MR Image Reconstruction,” IEEE Transactions on Med-
ical Imaging, vol. 40, no. 9, pp. 2306-2317, Sep. 2021.

Z. Ramzi, G. Chaithya, J.-L. Starck, and P. Ciuciu, “Nc-
pdnet: A density-compensated unrolled network for 2d and
3d non-cartesian mri reconstruction,” IEEE Transactions on
Medical Imaging, vol. 41, no. 7, pp. 1625-1638, 2022.

C. Lazarus, P. Weiss, L. El Gueddari, et al., “3d variable-

density sparkling trajectories for high-resolution t2*-weighted
magnetic resonance imaging,” NMR in Biomedicine, vol. 33,

no. 9, e4349, 2020.

G. R. Chaithya, P. Weiss, G. Daval-Frérot, A. Massire, A.
Vignaud, and P. Ciuciu, “Optimizing Full 3D SPARKLING
Trajectories for High-Resolution Magnetic Resonance Imag-
ing,” IEEE Transactions on Medical Imaging, vol. 41, no. 8,
pp. 2105-2117, Aug. 2022.

Z. Amor, P. Ciuciu, C. GR, et al, “Non-cartesian 3d-
sparkling vs cartesian 3d-epi encoding schemes for func-
tional magnetic resonance imaging at 7 tesla,” Plos one,
vol. 19, no. 5, €0299925, 2024.

J. R. Polimeni, V. Renvall, N. Zaretskaya, and B. Fischl,
“Analysis strategies for high-resolution uhf-fmri data,” Neu-
roimage, vol. 168, pp. 296-320, 2018.

P. A. Bandettini, L. Huber, and E. S. Finn, “Challenges and
opportunities of mesoscopic brain mapping with fmri,” Cur-
rent Opinion in Behavioral Sciences, vol. 40, pp. 189-200,
2021.

1019

[15]

[16]

[17]

[18]

(19]

(20]

[21]

[22]

(23]

O. Viessmann and J. R. Polimeni, “High-resolution fMRI at
7 Tesla: Challenges, promises and recent developments for
individual-focused fMRI studies,” Current opinion in behav-
ioral sciences, vol. 40, pp. 96-104, Aug. 2021.

P-A. Comby, A. Vignaud, and P. Ciuciu. “SNAKE-fMRI: A
modular fMRI data simulator from the space-time domain to
k-space and back.” arXiv: 2404.08282 [eess]. (Apr. 12,
2024), [Online]. Available: http://arxiv.org/abs/
2404.08282.

P. L. Combettes and J.-C. Pesquet, ‘“Proximal splitting meth-
ods in signal processing,” Fixed-point algorithms for inverse
problems in science and engineering, pp. 185-212, 2011.

P-A. Comby, B. Lapostolle, M. Terris, and P. Ciuciu, “Ro-
bust plug-and-play methods for highly accelerated non-
cartesian mri reconstruction,” ISBI 2025, 2025.

K. Zhang, Y. Li, W. Zuo, L. Zhang, L. Van Gool, and R. Tim-
ofte, “Plug-and-play image restoration with deep denoiser
prior,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 44, no. 10, pp. 6360-6376, 2021.

T. Hong, X. Xu, J. Hu, and J. A. Fessler, “Provable precon-
ditioned plug-and-play approach for compressed sensing mri
reconstruction,” IEEE Transactions on Computational Imag-
ing, 2024.

S. Farrens, A. Grigis, L. El Gueddari, et al., “Pysap: Python
sparse data analysis package for multidisciplinary image
processing,” Astronomy and Computing, vol. 32, p. 100402,
2020.

R. Souza, O. Lucena, J. Garrafa, et al., “An open, multi-
vendor, multi-field-strength brain MR dataset and analysis
of publicly available skull stripping methods agreement,”
Neurolmage, Segmenting the Brain, vol. 170, pp. 482494,
Apr. 15, 2018.

D. L. Parker, A. Payne, N. Todd, and J. R. Hadley, “Phase
reconstruction from multiple coil data using a virtual refer-
ence coil,” Magnetic Resonance in Medicine, vol. 72, no. 2,
pp. 563-569, 2014.



