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Abstract—Synesthesia is a phenomenon that causes sensory
crossovers, such as tasting sounds or hearing colors. The presence
of an underlying brain signature characterizing it still needs
to be investigated. Currently, synesthesia detection relies exclu-
sively on behavioral tasks, limiting both research and potential
clinical applications. In this paper, we build various models
predicting synesthesia, demonstrating that it can be predicted
from Magnetic Resonance Imaging (MRI) and functional MRI
(fMRI) recordings (modalities mapping functional and structural
properties of the brain), which confirms the presence of distinct
neural signatures underlying this condition. We employ Graph
Neural Networks (GNNs) as they are the most natural choice for
the fMRI data. We also integrate Kolmogorov-Arnold Networks
(KANSs) to explore their potential for interpreting the results as we
aim to facilitate the identification of the underlying neurological
biomarkers. Our approach achieves 93% accuracy in synesthesia
detection.

Index Terms—Synesthesia, MRI, fMRI, GNN, KAN

I. INTRODUCTION

Synesthesia is a condition in which ordinary stimuli, such
as digits or letters, induce concurrent experiences, such as
colors. Past research has revealed the diverse neurological
implications of synesthesia, from conferring memory advan-
tages through enhanced color processing to sharing atypical
sensory sensitivity with autism, while maintaining fundamen-
tally different perceptual processes from seemingly similar
experiences such as hallucinations [1, 2, 3]. These findings
could lead to new insights into how the brain integrates
and processes perceptual information, advancing our overall
understanding of human perception and potentially improving
treatments for related disorders. Synesthesia appears to result
from unusual neurodevelopmental processes, involving genetic
influences, distinctive brain connectivity patterns, and differ-
ences in cognitive and behavioral patterns. Therefore, investi-
gating synesthesia involves analyzing brain function through
both qualitative and quantitative approaches. For this research,
we will employ two imaging techniques: traditional Magnetic
Resonance Imaging (MRI) to examine brain structure, and
functional MRI (fMRI) to study brain activity patterns [4].

MRI captures detailed images of anatomical structures
using magnetic fields and radio waves, while fMRI mea-
sures blood flow changes in the brain, providing insights
into neural activity during resting states or specific tasks
and stimuli responses [5]. As a result, the data produced
are three to five-dimensional arrays, either stand alone or
in time series. In this work, we mostly focus on binary
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classification, given parcellations’ correlations. We will also
explore how Kolomogorov-Arnold Netoworks (KANs) can
bind with GNNs, combining their respective strengths. Overall,
we present an automated approach for detecting synesthesia
from neuroimaging data, enabling faster and more objective
diagnosis compared to traditional behavioral assessments. This
automated classification framework could also significantly
advance both clinical practice and research methodology in
synesthesia studies, while demonstrating the potential of deep
learning architectures for neurological condition detection and
analysis.

Previous research has examined both the brain activity
associated with synesthetic experiences and anatomical varia-
tions in synesthetes’ brains. Yet, many of the reported neural
differences between synesthetes and non-synesthetes lack solid
evidence, primarily because of insufficient sample sizes, errors
in statistical analysis, and constraints in research method-
ology [6]. Recent neuroimaging studies have advanced our
understanding of the neural basis of synesthesia. While initial
research focused on specific brain regions, evidence from
[7] suggests that synesthetic experiences involve distributed
networks rather than isolated areas. [8] demonstrated that
primary visual cortex activation is not essential for word-
induced synesthetic experiences, while [9] showed that non-
linguistic auditory stimuli activate the left inferior parietal
cortex, a region crucial for multi-modal integration. This col-
lectively supports a network-based perspective of synesthetic
processing. The most significant related work was performed
by the authors of the dataset that we will use, which analyzed
it and was able to classify synesthetes vs. non-synesthetes
on biomarkers using simple machine learning algorithms;
suggesting a distinct neural signature behind the synesthetic
experience [10]. For fMRI image classification in general, the
most direct way of processing is by means of graph deep
learning models for a node connectivity type of representation.
Other approaches, include processing spatial-temporal fMRI
volumes. Such tensors can be fed through CNN or transformer
based models.

Our paper is structured as follows: Section II shows the
dataset structure and how the preprocessing is carried out,
Section III elaborates on the methods tested and Section IV
provides the respective results. Finally, Section V presents
the future steps to be taken and Section VI concludes this
manuscript.
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II. METHODS

The data used in our project consist of graphs, which in turn
have nodes accompanied by features, explained in detail in the
relevant section. We, thus, explore graph related algorithms.

We allocated 97 samples for the training, 15 for validating
and 15 for testing. After single-epoch training, we evaluated
the performance of the models on the training and testing sets
with a final validation evaluation. See our GitHub repository
[11] for implementation details.

Potentially, the data could be represented in other formats
and methodologies beyond graph-based approaches could be
considered as well. If we treat the adjacency matrix as an
image, we could use image processing methods, such as
transformer or CNN-based techniques. However, we should
be careful when considering the kernel size and attention
mechanisms due to the position-dependent nature of patterns
within these matrices. Sequential data transformation could
also facilitate NLP-based processing. Still, graph-based pro-
cessing remains the most natural approach for this type of
data.

A. Baseline : Vanilla GraphConv

Our baseline model consists of 3 GraphConv layers as de-
fined by forch_geometric [12], and a final linear layer as can be
seen in Figure 1. This GraphConv layer is an implementation
of the graph neural network operator, as defined in [13]. The
input to this model is composed of the node features and the
node edges. Local and global neighborhoods are extracted,
and the model iteratively computes a coloring based on these
neighborhoods.

B. Brain Graph Neural Networks

We will use BrainGNN, a specialized GNN designed to
process brain connectivity data by incorporating region-of-
interest (ROI) awareness and specific pooling mechanisms
[14]. Originally, classification on the graph is achieved by
first embedding node features into a low-dimensional space,
then coarsening or pooling nodes and summarizing them. The
summarized vector is then fed into a multi-layer perceptron
(MLP) as can be seen in Figure 2 (left).

1) Layers: The BrainGNN architecture is composed of
blocks of ROI-aware Graph Convolutional Layer (Ra-GConv)
layers, Node Pooling (R-pool) layers and a readout layer.

a) ROI-aware Graph Convolutional layer: Ra-GConv
extends vanilla GraphConv by incorporating ROI-specific
weight learning, allowing different embedding weights for
different regions rather than using the same weights for all
nodes. As each input is parcelled with the same atlas and
the ROIs are ordered identically for every subject, we can use
pseudo-position of one-hot encoding to maintain the geometric
distribution of each ROI. In this way, the Ra-GConv layer
embeds node features, edge features and pseudo-positions.

b) Node Pooling layer: As we need to reduce the dimen-
sionality, we keep the most impactful ROIs and remove noisy
nodes.

¢) Readout layer: Tt summarizes the node feature vectors
into a single vector, which is fed into the classifier. This is the
layer that will be later replaced by the KAN layers.
2) Loss Functions: BrainGNN also provides the following
loss function components : cross-entropy loss, unit loss, group-
level consistency loss, TopK pooling loss.

C. Kolmogorov-Arnold Networks

1) A theoretical introduction: Kolmogorov-Arnold Net-
works (KANs) are a new approach to deep learning, described
in a recently published paper [15]. KANs can be used either in
their vanilla flavor, as an alternative to MLPs, or by integrating
them in the above-mentioned GNNSs. In contrast to MLPs,
which have fixed activation functions on nodes and learn-
able weights on the edges, KANs have learnable activation
functions on edges and no linear weights at all; every weight
parameter is replaced by a univariate function parameterized
as a spline. KANs are grounded in the Kolmogorov-Arnold
Representation Theorem, which states that every multivariate
continuous function on a bounded domain can be written as a
finite composition of continuous functions of a single variable
and addition operations. This theoretical foundation guarantees
that KANs can approximate the complex functions needed
for brain state classification while maintaining interpretability
through their univariate components. Owing to the fact that
KANSs are just combinations of MLPs and splines, they are
able to learn the compositional structure and the univariate
functions. Furthermore, the splines can be made arbitrarily
accurate by means of grid extension, without suffering the
curse of dimensionality.

2) Implementation and integration into BrainGNN: In our
implementation, we modify the original architecture by keep-
ing the Ra-GConv layers and the R-pool layers. We, then,
remove the readout layer and replace it with 2 KAN layers
(Alg. 1).

The complete forward pass can be expressed as:

h =@ (zgyN) y = P2(h)

where zg N is the output from BrainGNN layers.

Algorithm 1 Proposed Model Architecture

model:
(nl) :
convl) :

Network (
Sequential (Linear,
( MyNNConv
(pooll) TopKPooling
(n2) : Sequential (Linear,
(conv2): MyNNConv
(pool2): TopKPooling
(fcl): Linear

(bnl) : BatchNormld
(fc2): Linear
(

(

(

(

(

(

ReLU(), Linear)

ReLU(), Linear)

bn2) : BatchNormld
lin_in_1): Linear
kan_in_1): NaiveFourierKANLayer ()
lin_in_2): Linear
kan_in_2):
lin_out) :

NaiveFourierKANLayer ()
Linear

)

III. DATASET AND FEATURES

A high-quality and dimension data set was published re-
cently [4]. It is a neuroimaging database consisting of 102
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Fig. 1: Simple vanilla GraphConv model

Fig. 2: BrainGNN model (left) with KAN addition (right)
(14]

Model Train acc. | Train Loss | Train F1 Score | Test acc. | Test Loss | Test F1 Score | Params
Baseline
VanillaGNN 0.7900 0.2852 0.8827 0.8519 0.2852 0.9200 62786
Unscented
BrainGNN Without KAN 0.9280 0.0010 0.9560 0.9330 0.0100 0.9660 141922
Fragrant 0.7938 0.0038 0.8837 0.9333 0.0216 0.9655 29796770
BrainGNN With KAN ! ’ ’ : ' ’

TABLE I: Performance comparison across model variants. The table shows training and testing metrics (accuracy and loss),
F1 scores for balanced evaluation given class imbalance, and model complexity in terms of trainable parameters. VanillaGNN
serves as the baseline, while other variants test the contribution of different architectural components.
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Fig. 3: Training and testing accuracy of the baseline vanilla
model

synesthetic brains and 25 control participants, using state-of-
the-art 3T MRI protocols from the Human Connectome Project
(HCP). It consists of structural (T1- and T2-weighted) images
together with approximately 24 minutes of resting state data
per participant. In addition, a ‘deep phenotype’ is provided
which includes detailed information about each participant’s
synesthesia - including the specific type(s) they have (10 types
were considered in the study) associated with clinical and
cognitive measures [4]. This dataset also provides the HCP-
derived brain parcellations, and more specifically, subject-
specific parcellations according to the HCP-MMP1, which has
180 labels per hemisphere, subject-specific node time series,
and subject-specific connectomes.

In order to model the brain as a graph, the nodes are defined
as brain regions of interest (ROIs) and the edges are defined
as the functional connectivity between those ROIs, computed
as the pairwise correlations of the fRMI time series. However,

brain graphs are not translation invariant, and thus different
embeddings must be used over different nodes. To create such
a graph, first the brain is parcelled into N ROIs based on its T1
structural MRI. ROIs are graph nodes V = vy, ..., vy which are
preordered. As brain ROIs can be aligned by brain parcellation
atlases based on their locations in the structure space, the
brain graphs can be described as ordered aligned graphs. An
undirected weighted graph is defined as G = (V, E), where
E is the edge set, i.e., a collection of (v;,v;) linking vertices
from v; to v;. In this setting, G has an associated node feature
set that can be represented as matrix H = [h1, ..., hy], where
h; is the feature vector associated with node v;. For every
edge connecting two nodes, (v;,v;)eE, its strength is given
by e;jeR and e;; > 0. We also set e;; = 0 for (v;,v,) ¢ E
and therefore the adjacency matrix E = [e;;]eRV*Nis well
defined [14].

Given the HCP-derived brain parcellations, we follow the
matlab code provided along with the dataset to extract full
and partial correlations between the ROIs [4]. For each of
the 360 nodes, the full correlations are used as node features,
while the partial correlations are used to build the graph
edges, as suggested in [14]. The edge weights are normalized
per subject, and only the most positive (10%) and most
negative (10%) partial correlations are kept, while the rest are
discarded, in order to create a sparse matrix.

As a result, the final dataset used consists of 127 graphs.
Each graph has 360 nodes. Each node is associated with
a feature (a vector of 360 Pearson correlations), a pseudo-
position (one-hot encoded ROI index) and edges to other nodes
given by thresholded partial correlations.

IV. RESULTS

Our experiments focused on binary classification of synes-
thetic versus non-synesthetic brains using resting-state fMRI
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Fig. 4: Training and testing accuracy of the unscented
BraingGNN model

data processed into graph representations. The primary task
was to accurately identify synesthetic individuals from controls
based on functional connectivity patterns observed during rest,
with no external stimuli presented. As mentioned above, the
baseline model makes use of the node features and the node
edges only. No pseudo-positions, nor edge weights are fed to
the model. Given the simplicity of the model, it does learn fast,
and after just a few epochs, there is no more progress. The
performance both on the training and testing set remains equal
to always predicting synesthesia (the ratio of 102 synesthetes
and 25 controls gives a 0.816 success rate if the model always
predicts synesthesia).

A. Unscented (BrainGNN without KAN layers)

BrainGNN, as originally published, can learn better, as it is
provided with more information. Edge features and pseudo-
positions seem to help the model overcome the imbalance in
the data. However, the model is prone to overfitting.

B. Fragrant (BrainGNN with KAN layers)

By integrating the KAN layers in the model, we can
actually see no further improvement. However, there was a
consistent good generalization over the testing dataset, while
the performance on the training dataset was average. This
could be attributed to the constraints that come with the loss
function, and severely penalize the KAN too.

V. DISCUSSION AND FUTURE DIRECTIONS

The reliable classification of synesthetic brains from resting-
state fMRI data reveals important insights about the neurologi-
cal basis of synesthesia and provides opportunities for advanc-
ing detection methodologies. It, notably, allows us to study
how specific patterns of brain connectivity give rise to distinct
subjective experiences. The high accuracy achieved confirms
that distinctive patterns in functional brain connectivity result
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Fig. 5: Training and testing accuracy of the fragrant
BrainGNN model with KAN layers

from synesthesia, persisting even without a triggering stimulus.
This supports that synesthesia reflects fundamental differences
in neural architecture rather than momentary cross-activation
patterns. By identifying the neural correlates of these unusual
perceptual experiences, we may gain critical insights into one
of neuroscience’s most profound questions: how neural activity
transforms into conscious perception. Synesthesia provides
a natural window into how brain connections create unique
perceptual experiences, helping us understand the link between
neural activity and how we experience the world.

To this end, in the future, we plan to curate the imbal-
ance in the dataset by means of data collection and data
augmentation. While our study used fMRI data, incorporating
electroencephalogram (EEG) recordings could be beneficial
for clinical applications. Despite a lower spatial resolution,
EEG’s accessibility and ease of use could make synesthe-
sia diagnosis more widely available. Moreover, using time-
series averages may not fully utilize our rich temporal data.
We could improve performance by extracting overlapping
temporal patches, adding controlled noise to simulate brain
activity variations, and using variable-length sliding windows
to capture different temporal dependencies.

The integration of KAN layers, though not improving raw
performance metrics, demonstrated promising generalization
capabilities - suggesting that it may be valuable for clinical
applications. More sophisticated versions of KAN will also
be considered. Moreover, as it has been observed that the
brain network’s underlying graphical model is non-Gaussian,
one could consider incorporating Cauchy graphical model or
Cauchy-GNN [16] in future works. Such approaches could be
combined with adaptive methods like Graph Signal Adaptive
Message Passing (GSAMP) [17] to handle the non-Gaussian
temporal dynamics through spatiotemporal localized updates
that process time-varying graph signals under both Gaussian
and impulsive noise conditions.
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VI. CONCLUSION

Our study demonstrated that synesthetic experience can be
reliably detected from resting-state fMRI, achieving 93.3%
accuracy in classification. BrainGNN was able to capture
the subtle differences in functional connectivity characterizing
synesthetic brains, while KAN integration showed promise
for clinical applications. Overall, the high-accuracy achieved
confirms that synesthesia leaves detectable neural “finger-
prints” even during rest, indicating fundamental differences in
neural organization. Our graph-based deep learning approach
provides insights into how brain activity becomes conscious
experience and allows us to measure objectively what once
could only be described subjectively.

DATA AND CODE AVAILABILITY

All the code can be found on GitHub [11], with instructions
on downloading the required data from the original sources.
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