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Abstract—Simultaneous EEG-fMRI acquisitions leverage the
complementary strengths of the two functional neuroimaging
modalities, with promising applications in the development of
neurofeedback (NF) brain-computer interfaces (BCIs). While
fMRI provides superior mapping of brain activity, EEG is more
accessible for NF-BCI interventions. Previous work has attempted
to identify the EEG features that best predict fMRI activity
patterns, but the performance achieved is still poor. In this work,
we leverage a well-established deep learning network for the
classification of EEG signals, EEGNet, and propose an extension
to the regression task of predicting the fMRI signal at a specific
time point from concurrent EEG data (R-EEGNet). We target
the activity of the somatomotor network (SMN) during the
execution of two motor imagery (MI) tasks used in NF-BCIs
for motor rehabilitation in stroke patients. For this purpose, we
use a simultaneous EEG-fMRI dataset collected from 15 healthy
subjects while executing the tasks in two separate sessions. The
fMRI data are analyzed to extract a time series of MI activity
for each subject and task, and the R-EEGNet model is trained
to predict each fMRI time sample from a 15-seconds segment of
multi-channel EEG data. We evaluated the proposed R-EEGNet
model performance in comparison with a conventional machine
learning model (Group Lasso) trained on EEG spectral features,
as well as with a Naı̈ve model based on the EEG somatomotor
rhythm. We found that R-EEGNet achieved a similar perfor-
mance to Group Lasso, both being significantly superior to the
Naı̈ve model. Our results provide the first demonstration of the
ability of a subject-specific deep learning model to predict fMRI
motor signals based directly on the EEG signal, without the need
to extract spectral features. Future work should improve model
performance through further hyperparameter optimization and
the exploitation of data augmentation to cope with the typically
small size of EEG-fMRI datasets.

Index Terms—EEG-fMRI, Deep Learning, EEGNet, Neuro-
feedback, Brain computer interfaces, Motor Imagery.

I. INTRODUCTION

The simultaneous acquisition of electroencephalography
(EEG) and functional magnetic resonance imaging (fMRI) is

motivated by the strong complementarity between the two
modalities. While EEG measures brain activity through the
electric potentials reaching the scalp with high temporal reso-
lution but poor spatial resolution, fMRI captures the relatively
slow changes in blood flow coupled to brain activity with
excellent spatial localization [1] [2]. Simultaneous EEG-fMRI
was first explored in epilepsy research and since then has
been applied in several areas of cognitive neuroscience. More
recently, it has gained popularity in the context of neuro-
feedback (NF) brain-computer interfaces (BCIs) [3] [4] [5]
[6]. Indeed, the two techniques also greatly differ in their
accessibility, with EEG presenting a significant advantage due
to its portability and low cost. This is particularly relevant in
NF-BCI applications, which typically require participants to
undergo multiple, relatively long sessions. Therefore, it would
be desirable to exploit simultaneous EEG-fMRI data to find
EEG features reflecting the activity of brain networks finely
mapped by fMRI, so that they could then be used on their
own in EEG NF-BCIs.
Previous research has explored this problem of EEG to fMRI
prediction using conventional machine learning (ML). No-
tably, Meir-Hasson et al. [7] introduced the EEG fingerprint
method to predict the fMRI activity of the amygdala during
a NF paradigm, which has been used in a series of subse-
quent studies. They employed linear regression with Ridge
regularization based on the time-frequency representation of
EEG data from a single electrode. In a similar approach, Cury
et al. [8] proposed linear regression with a modified penalty
to predict NF-fMRI scores from multi-channel EEG spectral
power during motor imagery (MI) tasks. Simoes et al. [9]
instead used nonlinear random forest regression with different
kinds of EEG features for fMRI signal prediction during facial
expression processing.
To the best of our knowledge, there is a lack of studies
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utilizing deep learning (DL) for predicting fMRI from EEG.
In response, we propose adapting EEGNet [10], a well-
established and widely used DL model for EEG classification,
to predict fMRI activity. EEGNet is designed for EEG-based
BCIs and performs EEG classification on amplitude time
series of EEG signals. The model offers several advantages,
including applicability across various BCI paradigms (such as
evoked potentials, error potentials, and sensory motor rhythms
classification), the ability to train with limited data, and the
generation of interpretable features [10].
Our approach is to retain EEGNet’s feature extraction layers,
and hence its ability to capture relevant spatiotemporal patterns
in EEG signals, while adapting its final output to suit the
regression-based nature of fMRI signal prediction. We thus
introduced a novel architecture which we referred to as R-
EEGNet. We aim to create subject-specific models capable of
predicting fMRI activity of the somatomotor network (SMN)
across MI sessions spaced over time. Moreover, we aim to
predict fMRI signals reflecting trial-evoked (TE) brain activity,
as in previous works, as well as spontaneous trial-by-trial
(TBT) fluctuations in brain activity. We also provide insights
into model explainability and compare the results obtained
with the proposed R-EEGNet with a state-of-the-art ML model
based on Group Lasso as well as a literature-based Naı̈ve
model [11].

II. MATERIALS AND METHODS

A. Data

1) Participants and protocol: Data were acquired at Hospi-
tal da Luz Imaging Center in Lisbon, from 15 healthy subjects
(6 females, 9 males; mean age 24.4 ± 2.8 years), as part of
the NeurAugVR Project, with approval from the hospital’s
Ethics Committee. The protocol consisted of two acquisition
sessions conducted approximately two weeks apart. In each
session, participants were studied while performing two MI
tasks: abstract MI, based on the Graz MI training paradigm,
and MI combined with motor observation (MIMO), based on
embodied stimulus presented through a virtual reality (VR) as
part of the NeuRow training paradigm [12] [13].
Graz MI task (referred to as Graz from now on) required
subjects to imagine left or right arm movements in response
to a visual cue on a screen. In contrast, NeuRow MIMO task
(referred as NeuRow) involved immersing participants in a VR
environment, where they observed an avatar of their own arms
rowing a boat to match the visual cue. Each session consisted
of three runs, with 18 MI trials per run, each lasting around
10 seconds, interspersed with rest periods. This resulted in
approximately 17 minutes of EEG-fMRI data per Graz or
NeuRow session.

2) EEG-fMRI acquisition: BOLD-fMRI data were acquired
on a 3T MRI Siemens Vida system with a 64-channel head
RF coil. Whole-brain functional images were acquired using
a T2*-weighted 2D multi-slice EPI (voxel size = 2.2 x 2.2
x 2.2 mm3, TR = 1260 msec, echo time TE = 30msec, flip
angle = 70°, SMS-3, GRAPPA-2, 60 axial slices). Whole-brain
structural images were acquired on the same scanner using a

MPRAGE sequence (voxel size = 1 x 1 x 1 mm3, TR = 2300
msec, TE = 2.98 msec).
EEG data were collected concurrently using an MR-
compatible 32-channels EEG system (Brain Products GmbH,
Gilching, Germany) placed according to the 10-10 standard
system. The reference electrode was positioned close to the
FCz location, and one electrode placed on the back for
electrocardiogram (ECG) recording. EEG, ECG, and fMRI
data were acquired simultaneously in a continuous way and
synchronized by the means of a Syncbox (Brainproduct)
device. The sampling rate of EEG and ECG was 10kHz and
no filters were applied during the recording phase.

3) EEG-fMRI pre-processing: fMRI data pre-processing
was performed using FMRIB’s software library (FSL) tools,
including: EPI distortion correction, motion correction, high-
pass temporal filtering >0.01 Hz; low-pass spatial filtering
with a Gaussian kernel with full width at half maximum of
3.3 mm; and registration to MNI standard space.
EEG data pre-processing was performed using Matlab tools,
including correction of fMRI-related artifacts, resampling to
250 Hz, bad channel removal, re-referencing, ICA decompo-
sition, and removal of components related to eye and muscle
artifacts. Remaining artifacts such as muscle activity bursts
were mitigated using burst interpolation, followed by outlier
correction and signal standardization.

4) fMRI mapping and signal extraction: The preprocessed
fMRI data were submitted to a first-level voxelwise general
linear model (GLM) analysis using regressors of interest
(stimulus functions and their derivatives) and nuisance regres-
sors (motion outliers and parameters). Group-level analysis of
task-related fMRI changes identified a map of significantly
activated brain regions across subjects, sessions, and runs.
Brain activation maps were defined for each run, session and
subject, as the intersection of the group-level activation map
with the corresponding run-level map.
For each subject, session and run, TE fMRI signals were
computed by averaging voxel time series within the respective
maps. Additionally, TBT fMRI signals were obtained by first
removing the contribution of task-related regressors of interest
from voxel time series and then averaging the residuals within
the same maps. Finally, both TE and TBT fMRI signals were
normalized (zero mean, unit variance) and concatenated across
runs, to yield the target signals for each subject and session.

B. EEG-fMRI modeling

1) EEG-fMRI dataset: The EEG-fMRI dataset to be used
for model estimation was created by pairing each fMRI sample
with a 15-seconds segment of preceding EEG data. This
approach is based on the known delay of the haemodynamic
response measured by the fMRI signal, allowing for this to
vary between 0 and 15-seconds. Indeed, although a canonical
delay of around 6 seconds is often used, a more flexible
model is important to take into account for potential variations
across different brain regions and individuals [14]. We filtered
EEG data applying a bandpass filter (8–30 Hz) using FIR
filters (Hann window, order 32) to capture MI-related activity
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Fig. 1. R-EEGNet model architecture. The model consists of 3 blocks,
including an initial temporal convolution layer followed by spatial depthwise
convolution, and the separable convolution to aggregate temporal and spatial
features from EEG data. Batch normalization and dropout layers enhance
generalization, while average pooling allows data size reduction.

[15], and then further down-sampling to 80 Hz to reduce
computational load and improve generalization.
We generated 60 subject- and condition-specific EEG-fMRI
datasets from 15 subjects and 4 conditions, corresponding to
the 2 tasks, each with TE and TBT activities conditions: Graz
- TE, Graz - TBT, NeuRow - TE, and NeuRow - TBT. For
each subject and condition, the three runs of each session were
concatenated while the two session were kept separate. The
input data were structured as a [S×N ×C×T ] tensor, where
S is the number of sessions (S = 2), N is the number of
EEG-fMRI time samples over each session (N = 792), C is
the number of EEG channels (C = 31), and T is the number
of EEG time points in each 15-seconds segment (T = 3750).
The outputs were [S ×N ] tensors.

2) R-EEGNet model architecture: The architecture of our
proposed R-EEGNet model is presented in Fig. 1. The model
retains the original Block 1 and Block 2 of EEGNet. Block
1 performs temporal and spatial filtering using two sequential
convolutional steps. It first applies 1D convolutions with F1
temporal filters designed to decompose EEG signals into dif-
ferent frequency bands. This is followed by a depthwise con-
volutional layer that applies D spatial filters to each frequency-
specific input map. Batch normalization and an ELU activation
layer follow. Block 2 combines extracted features through
separable convolutions. It first applies a depthwise convolution
(groups = 1) to summarize individual feature maps in time, fol-
lowed by F2 pointwise convolutions to merge these summaries
across feature maps. This approach differs from traditional
convolutions by decoupling relationships both within and
across feature maps, thus reducing the parameter count and
improving feature extraction efficiency. Finally, we modified
Block 3 of the original EEGNet architecture, by replacing the
original multiple neurons with sigmoid activations by a single
neuron with a linear activation function, omitting the bias term.
This change resulted in a regressor version of EEGNet, which
we call R-EEGNet.

3) Model training and cross-validation: A nested M-K-
fold cross-validation (CV) approach was employed to optimize
hyperparameters and evaluate model performance. The inner
loop partitioned the data in each session into the three runs
(K = 3) for hyperparameter optimization. The outer loop
partitioned the data into the two sessions (M = 2) to evaluate
the performance of the model selected in each session on the

other session. Models were trained using Adam optimizer, with
the mean squared error (MSE) as the loss function.
We identified the following key hyperparameters to be opti-
mized: F1 (number of temporal filters), D (number of spatial
filter groups), and F2 (number of pointwise filters). A grid
search was conducted to identify the filter settings that yielded
the lowest MSE averaged across inner cross-validation loops.
Candidate values were selected to maintain the total number of
model parameters close to the original EEGNet architecture,
preserving its compactness. Given that the standard EEGNet
model has N = 1646 parameters, we tested filter combinations
that resulted in a model with parameters n within the range:

2

3
N ≤ n ≤ 4

3
N (1)

This range was selected to avoid reducing the model’s perfor-
mance by making it too small, while also preventing overfitting
by making it excessively large. An example of the R-EEGNet
model with specific hyperparameters is presented in Fig. 2.
Model hyperparameters learning rate and batch size were
manually tuned through empirical trials. Batch size was set
to 32 during hyperparameter optimization.

4) Model evaluation: To assess model performance and
compare across different models, we computed the Pearson
correlation between the estimated and the true fMRI signals
and took the average across the two session in the CV-outer
loop. The proposed DL model R-EEGNet was compared with
two reference models: a state-of-the-art ML model, Group
Lasso; and a literature-based model, Naı̈ve model.
For Group Lasso, lagged linear regression was performed
based on EEG spectral power using Group Lasso regulariza-
tion [11]. The EEG spectral power were previously extracted
by performing time-frequency decomposition of the EEG
signal using Morlet Wavelets in 1 Hz frequency bins. The
EEG spectral power time series in each channel was lagged
between 0 and 15-seconds (to match the 15-seconds segment
of EEG data used in R-EEGNet). The resulting multi-channel,
multi-frequency, and multi-lag EEG time series were entered
as regressors. The training and cross-validation scheme was
identical to the one used for R-EEGNet.
For the Naı̈ve model, we computed the total EEG band power
in the alpha and beta bands (8-30 Hz), took the average
between channels C3 and C4, and shifted the resulting time
series by the canonical hemodynamic delay of 6 seconds.

III. RESULTS

A. fMRI mapping and signal extraction

The group activation maps obtained for both MI tasks,
Graz and NeuRow, across all runs, sessions and subjects, are
presented in Fig. 3. As expected, the SMN is activated as well
as parietal and occipital brain areas associated with visuomotor
coordination, which are typically engaged in MI tasks [16].
Illustrative examples of the fMRI signals representing TE
activity of these networks in one representative subject, session
and run, are also presented in Fig. 3
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Fig. 2. R-EEGNet model hyperparameters. Here EEG data are structured as [31x128] for a given example. The model consists of an initial temporal
convolution layer (F1 = 4), followed by spatial depthwise convolution (D = 2) and separable convolution (F2 = 8), and includes average pooling layers
with kernels of size (1, 2) and (1, 2).

Fig. 3. fMRI mapping and signal extraction for the Graz and NeuRow MI
tasks. (Left) Group-level fMRI activation (Z-stat) maps across runs, sessions
and subjects; and (Right) Illustrative examples of the fMRI signals (percent
signal change) representing TE activity of these networks in one representative
subject, session and run.

B. R-EEGNet model performance

The performance of the proposed R-EEGNet model across
all subjects, for each of the four tested conditions, is presented
in Fig. 4. We found that R-EEGNet and Group Lasso models
performed similarly (median Pearson correlation values across
subjects around 0.20 for the TE conditions and 0.15 for the
TBT conditions), and better than the Naı̈ve model (less that
0.10 for all conditions).

C. R-EEGNet model explainability

We investigated model explainability by analyzing the fre-
quency response of the temporal kernels, and the weights of
the spatial kernels, as shown in Fig. 5 for an illustrative subject
and condition. The temporal kernels reveal which frequencies
are enhanced or suppressed by the first convolutional layer,
highlighting the EEG frequencies most relevant for prediction.
Meanwhile, the weights of the spatial kernels determine how
these extracted frequencies are further emphasized or attenu-
ated across different EEG channels.

IV. DISCUSSION AND CONCLUSION

We developed and validated a DL approach, R-EEGNet,
to predict fMRI responses during MI tasks directly from
simultaneous EEG data, by leveraging the well-established

Fig. 4. Model test performance. Distributions across subjects of the Pearson
correlation values between the predicted and true fMRI signals, obtained for
the R-EEGNet model (green), in comparison with the Group Lasso model
(red) and the Naive model (blue).

DL EEGNet architecture originally used for EEG classification
and adapting it to the problem of fMRI signal prediction in
a regression task. Using simultaneous EEG-fMRI acquisitions
from 15 subjects in two separate sessions, we trained subject-
and condition-specific models capable of predicting fMRI
activity across sessions spaced over time. We showed that R-
EEGNet model was able to predict both TE brain activity
as well as TBT brain activity fluctuations in two different
MI tasks. The models clearly outperformed a Naı̈ve model
based on the EEG somatomotor rhythm, and were comparable
to state-of-the-art linear regression based on EEG spectral
features using Group Lasso regularization [11] inspired by
[8], highlighting the potential of DL approaches to predict
fMRI signals directly from the EEG signal amplitude during
MI training sessions.
The use of models for TBT fMRI prediction demonstrated
lower performance in both Graz and NeuRow cases when
compared to predicting the fMRI signal with task-specific
contributions. This was expected given that TBT signals reflect
ongoing, spontaneous fluctuations of brain activity, unlike the
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Fig. 5. Model explainability for representative subject 07, NeuRow Task,
Session 1 as training set. (Top) Frequency response of temporal kernel: Plot
of kernel number 5 out of 8 (F1 = 8). We can observe that frequencies in
range 10 - 16 Hz are enhanced by this kernel. (Bottom) Spatial kernels: Plot
of group-1 and group-2 (D = 2) kernel acting on EEG channels processed by
the temporal kernel number 5 (from the top).

task signals, which correspond to brain activation driven by the
periodic paradigm timings. The latter not only reflect larger
changes in brain activity, but they are also more likely to
be correlated between modalities given the common external
driver (i.e., the task paradigm). Nonetheless, it is remarkable
that some predictive power can still be achieved for sponta-
neous fluctuations in brain activity measured by fMRI from
those measured by EEG.
In sum, our results provide the first demonstration of the ap-
plicability of a DL approach to the problem of predicting both
TE activity and TBT fluctuations during MI, with potential for
applications in NF-BCI interventions. Future work should aim
to improve model performance through further hyperparameter
optimization and the exploitation of data augmentation to cope
with the typically small size of EEG-fMRI datasets.
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