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Abstract—This study aims to assess the impact of 

physiological noise, introduced by respiratory and cardiac 

cycles, in phase images acquired with functional magnetic 

resonance imaging (fMRI), which are the main input for 

functional quantitative susceptibility mapping (fQSM). We 

demonstrated that retrospective physiological noise correction 

reduces the temporal variance of phase image timeseries. We 

showed the impact of respiratory and cardiac noise correction 

at different stages of the fQSM pipeline, focusing on the 

following regions of interest: the visual cortex, the auditory 

cortex and the brainstem. Physiological noise correction, 

quantified in terms of the ratio between the temporal variance 

of the corrected and uncorrected timeseries, exhibited a large 

dependence on the acquisition echo time in phase images. The 

dominant noise component originated from respiration. At later 

stages of the fQSM processing pipeline, the impact of noise 

ascribable to the cardiac cycle became dominant, especially at 

short echo times. The brainstem exhibited the largest effects of 

cardiac noise correction. Our results suggest that, in the 

challenging context of fQSM, physiological noise correction may 

be a necessary preprocessing step, more than in conventional 

fMRI, especially when the target regions include brain areas 

largely affected by respiratory and cardiac-related noise, such 

as the brainstem.   

Keywords—magnetic resonance imaging, brain activity, 

functional MRI, magnetic susceptibility, quantitative susceptibility 

mapping, functional QSM, physiological noise, respiration noise, 

cardiac noise 

I. INTRODUCTION 

Quantitative susceptibility mapping (QSM) is a recently 
established technique enabling a quantitative assessment of 
biological tissues’ magnetic susceptibility using Magnetic 
Resonance Imaging (MRI) phase images as input data [1]. The 
rationale of QSM and the necessary steps to achieve it are 
illustrated in detail in the literature [2], and are summarized as 
follows.  

In the presence of an external, homogeneous magnetic 
field 𝐵0, protons precess with frequency 𝜔0 = 𝛾 ∙ 𝐵0, where 
𝛾 = 42.577 MHz/T is the gyromagnetic ratio of the proton. 
However, small, local magnetic field perturbations ∆𝐵  are 
caused by the spatial distribution of tissues with different 
magnetic susceptibilities 𝜒, convolved with the known unit 
magnetic dipole kernel 𝑑, that is, the mathematical expression 
describing the magnetic field generated by a point-like 
susceptibility source in its surrounding space.  

Local field inhomogeneities are described by the 
following equation: 

 ∆𝐵(𝑟) = 𝐵0 ∙ [𝜒(𝑟) ⊗ 𝑑(𝑟)] () 

where 𝑟  represents the vector of spatial coordinates and ⊗ 
indicates the convolution operation. Such field perturbations 
∆𝐵  do not precisely co-localize with the magnetic 
susceptibility sources; instead, perturbations extend beyond 
their sources due to the convolution operation with the dipole 
kernel. Information on the spatial distribution of field 
inhomogeneities is contained in the phase of the complex-
valued gradient-echo MRI signal obtained at a specific Time 
of Echo (TE): 

 𝜑(𝑟, 𝑇𝐸) = 𝛾 ∙ ∆𝐵(𝑟) ∙ 𝑇𝐸 + 𝜑0(𝑟) () 

where TE is the Time of Echo (that is, the time when the MR 
signal is read after excitation) and 𝜑0 is the phase at TE = 0. 
A map of 𝜒(𝑟) is finally obtained via deconvolution of the 
dipole kernel. 

A. Functional MRI 

The study of magnetic susceptibility is relevant in a wide 
range of applications, including clinical studies targeting 
biological tissues with different 𝜒 (for example, tissues with 
different concentrations of iron, lipids, calcium) [3], and 
functional MRI (fMRI), which is the focus of this research. In 
fact, fMRI relies on the varying relative concentrations of 
oxygenated and deoxygenated hemoglobin (which have This study was supported by the Japanese Society for the Promotion of 
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different magnetic susceptibilities) in the blood, in response to 
neural activity, that is, the so-called Blood-Oxygenation Level 
Depended (BOLD) effect [4]. Conventional BOLD-fMRI 
aims to identify neural activity on the basis of local changes 
in the magnitude of the complex-valued MRI signal, which 
follows the temporal fluctuations of local field inhomogeneity 
related to the varying concentrations of oxy- and deoxy-
hemoglobin. Following the considerations above, the 
information provided by conventional BOLD-fMRI is not 
well localized (as field perturbations involve the 
neighborhood of the magnetic susceptibility source) and not 
quantitative. 

B. Functional Quantitative Susceptibility Mapping 

Functional QSM (fQSM) is a recent extension of 
traditional QSM to functional brain mapping [5], [6], [7], [8], 
[9], [10], [11], [12], [13]. Data for fQSM is typically obtained 
using a 2D Echo-Planar Imaging (EPI) MRI sequence, which 
is the same acquisition sequence used for conventional fMRI-
BOLD. However, instead of identifying activations based on 
changes in the signal magnitude, fQSM leverages on the 
information embedded in the MR signal phase and offers 
additional information to that of BOLD contrast. The main 
advantages of fQSM over fMRI include providing a 
quantitative measure of magnetic susceptibility changes over 
time, and its images are virtually void of the spurious, 
nonlocal signal alterations that are commonly present in 
conventional fMRI. Taken together, these two properties 
enable fQSM to provide a quantitative assessment of a 
precisely localized response.  

C. Physiological noise in functional MRI 

Information in BOLD-fMRI is carried by small 
fluctuations of the MR signal magnitude, typically consisting 
of around 2% signal change in noisy timeseries. fQSM is even 
more challenging, considering that in fQSM the spatially 
smooth signal components, inherent to fMRI and beneficial 
for activity detection, are absent. It follows that improving the 
fQSM quality, for example by removing noise components, is 
particularly important.  

Functional MRI data are affected by unavoidable 
physiological noise arising from respiration and cardiac 
cycles, which can reduce the visibility of true neuronal 
activation and sometimes appear as false activations 
themselves. In this context, one possible denoising approach 
is to resort to physiological noise modelling, for example with 
the well-established RETROspective Image CORrection 

(RETROICOR) approach that utilizes external recordings of 
the cardiac and respiratory signals [14]. In short, 
RETROICOR assumes that the physiological processes of the 
cardiac and respiratory cycles are quasi-periodic and phase 
values 𝜑𝑐 and 𝜑𝑟, ranging between 0 and 2π, can be assigned 
to each 2D image depending on the temporal position of the 
acquired image, relative to cardiac and respiratory cycles, 
respectively. For example, the cardiac phase of a frame 
acquired at time 𝑡𝑎 is: 

 𝜑𝑐(𝑡𝑎) = 2𝜋 ∙ (𝑡𝑎 − 𝑡𝑝)/(𝑡𝑠 − 𝑡𝑝) () 

where 𝑡𝑝 is the time of the R-wave peak in the cardiac cycle 

preceding 𝑡𝑎, while 𝑡𝑠 is the time or the subsequent R-wave 
peak. 𝜑𝑟 is assigned similarly, relative to the respiratory cycle. 
It follows that the physiological noise components relative to 
the cardiac cycle, 𝑦𝑐(𝑡), and the respiratory cycle, 𝑦𝑟(𝑡), can 
be expressed as a low-order Fourier series expanded in terms 
of these phases. For example, for the cardiac component: 

 𝑦𝑐(𝑡) = ∑ [𝑎𝑚
𝑐 cos(𝑚𝜑𝑐) + 𝑏𝑚

𝑐 sin(𝑚𝜑𝑐)]
𝑀
𝑚=1  () 

where M is typically set to 2 [14].  This approach assumes that 
no other temporal modulations share the same periodicity as 
the cardiac or respiratory cycles. For resting-state or block-
design fMRI, this assumption generally holds. However, in 
event-related fMRI, careful task design is essential to ensure 
that the task temporal structure differs sufficiently from the 
cardiac and respiratory rhythms. The impact of physiological 
noise is known to affect EPI phase to a greater extent than the 
magnitude signal [15], [16]; however, the effect of 
physiological noise correction on EPI-phase and fQSM has 
not been thoroughly investigated.  

In this study, we investigate the effects of respiratory and 
cardiac noise correction on the EPI phase at different stages 
through the QSM pipeline, and in different brain regions that 
may be differently impacted by physiological noise.  

II. MATERIALS AND METHODS 

Multi-echo 2D-EPI magnitude and phase data were 
acquired on a MAGNETOM Prisma 3T MRI system. Four 
healthy volunteers (average age, 47.2 years; all males) were 
presented with flickering checkerboard visual stimuli, with a 
stimulus duration of 0.5 s and inter-stimulus intervals of either 
16 s or 24 s over three consecutive runs consisting of 205, 200 
and 205 frames, respectively. For each volume, Times of Echo 

 

Fig. 1. Scheme of the processing pipeline, including physiological noise correction of the complex-valued input data and further processing of phase images 
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(TE) were 14.4, 35.3, 56.1, 77.0 ms; Time of Repetition (TR) 
was 1.6 s; voxel size was 2 mm isotropic with matrix size = 
110×110×60; multiband factor = 4; parallel imaging 
acceleration with Generalized Autocalibrating Partially 
Parallel Acquisitions (GRAPPA) [17] was used, with 
GRAPPA factor = 3; partial Fourier = 7/8. 

Pulse oximetry and respiratory data were acquired 
simultaneously with the EPI acquisitions using a BioPac 
MP150 system. Physiological noise correction was applied 
using an in-house RETROICOR program on the real and 
imaginary components of the complex-valued images on a 
voxel-wise basis, as schematically represented in Fig. 1. Then, 
the phase images were extracted from the uncorrected and 
noise-corrected complex-valued images, the latter consisting 
of three sets of data where i) only cardiac correction, ii) only 
respiration correction, and iii) respiratory followed by cardiac 
noise correction were applied. For each frame and echo, 2π 
ambiguities in phase images were resolved using SEGUE 
(Speedy rEgion-Growing algorithm for Unwrapping 
Estimated phase) [18].  

Further processing, common to all four sets of unwrapped 
phase images, included the removal of low spatial frequency 
field inhomogeneities related to large magnetic susceptibility 
differences of no interest (e.g., between the magnetic 
susceptibility of brain tissues and air) by applying 2D+3D 
variable-kernel sophisticated harmonic artifact reduction for 
phase data (V-SHARP) [19], which resulted in local tissue 
phase maps. The phase-to-susceptibility operation was 
achieved with the iterative least squares (iLSQR) method [20], 
which resulted in the final fQSM data (Fig. 1).  

The metric used to assess the impact of physiological noise 
correction (PNC) is the relative variance 𝜎𝑟

2 , which is 
calculated voxel-wise as the ratio between the temporal 
variance after PNC and the temporal variance before 
correction:  

 𝜎𝑟
2 = 𝜎𝑎𝑓𝑡𝑒𝑟𝑃𝑁𝐶

2 𝜎𝑏𝑒𝑓𝑜𝑟𝑒𝑃𝑁𝐶
2⁄  () 

The expected values of 𝜎𝑟
2 are in the range [0, 1], with lower 

values indicating more effective PNC. This metric was 
calculated separately for the four echoes, at different steps of 
the QSM pipeline: on the unwrapped phase, on the local tissue 
phase and on the final fQSM data. The relative variance was 
computed within the whole brain mask obtained with the 
Brain Extraction Tool (BET) [21], as well as in the following 
regions of interest (ROI): the visual cortex and auditory 
cortex, obtained from the Juelich MNI template [22], and in 
the brainstem, obtained from the Talairach MNI template [23].  

III. RESULTS 

The amount of temporal variance removed by 
physiological noise correction was quantified at different steps 
of the fQSM pipeline, as described in the subsections below. 

A. Impact of PNC in the unwrapped phase 

In the unwrapped phase images, the amount of removed 
variance exhibited echo dependence, with smaller 𝜎𝑟

2 (that is, 
larger impact of physiological noise) at longer TE than at the 
shortest TE. In the visual cortex, the average 𝜎𝑟

2  varied 
between 0.83 and 0.72 with TE, while in the auditory cortex it 
varied between 0.87 and 0.74. In the whole brain mask, 
however, average 𝜎𝑟

2  varied less with TE, ranging between 
0.83 and 0.80. The most part of removed variance was 
ascribable to respiration noise. The impact of cardiac noise 
was minimal and exhibited a less clear TE dependence 
globally, throughout the whole brain, but clear, localized 
effects were visible near vessels and the brainstem. Fig. 2 
highlights this behavior across the whole brain for one 
representative subject and presents quantitative values of 
relative variance calculated in the visual cortex, auditory 
cortex, and brainstem. In the brainstem, the set of images 
acquired at the longest TE exhibited 𝜎𝑟

2  > 1 for the data 

 

Fig. 2. The impact of physiological noise correction (PNC), mapped in terms of relative variance, 𝜎𝑟
2, i.e. the voxelwise temporal variance reduction relative 

to the uncorrected data, in the unwrapped phase images of one representative subject. The colored maps in first row, overlaid onto an anatomical scan, represent 

𝜎𝑟
2 when both respiratory and cardiac noise correction and applied, for the four echo times. The second and third row represent 𝜎𝑟

2 when only either respiration 

or cardiac noise correction are applied, respectively. Images obtained with longer TE exhibit the largest global impact of PNC. Large scale effects involving 

the whole brain are ascribed to respiration (examples indicated by red circles), while localized effects in the region of the brainstem are most prominent at 

short TE and are related to cardiac noise (white arrows). Plots on the right side of the figure indicate 𝜎𝑟
2 in the visual cortex (top), auditory cortex (middle) and 

brainstem (bottom) when both respiratory and cardiac noise correction are applied (blue), as well as when only either respiration (red) or cardiac (yellow) 

noise corrections are applied 
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corrected only for cardiac noise. No apparent difference in the 
impact of PNC was observed between the visual cortex and 
the surrounding cortex, suggesting that PNC does not 
misidentify the visual response as cardiac or respiratory noise.  

B. Impact of PNC in the local tissue phase 

In the local tissue phase images after the V-SHARP step, 
respiratory noise and cardiac noise had a similar impact across 
the whole brain. The amount of removed variance is mapped 
in Fig. 3 for the subject shown also in Fig. 2. The global effects 
of respiration noise which were dominant in Fig. 2, here are 
absent, given that at this processing stage the low spatial 
frequency components are removed. Locally, the most 
pronounced effects of physiological noise are in the vicinity 
of the brainstem, where 𝜎𝑟

2  exhibits values as low as 0.16 
especially at shorter TE, related to cardiac noise. Values of 𝜎𝑟

2  
in the local tissue phase calculated in the visual cortex, 

auditory cortex, and brainstem, for different values of TE, are 
also shown. It is worth noting that in the brainstem the set of 
images acquired at the longest TE exhibited 𝜎𝑟

2 > 1 for the 
data corrected for only either respiratory or cardiac noise. 

C. Impact of PNC in the functional QSM 

In QSM images, 𝜎𝑟
2  in the whole brain mask was, on 

average, 0.96 and did not exhibit TE dependence. The 
correction of either respiratory or cardiac noise contributed 
equally in terms of average relative variance across the whole 
brain, as displayed in Fig. 4 for the subject shown also in Fig. 
2 and 3. Different patterns of localized 𝜎𝑟

2  reduction were 
observed near the brainstem, orbitofrontal cortex and near 
blood vessels. The most remarkable reduction in temporal 
variance was observed near the brainstem for shorter TE and 
was ascribable to cardiac noise. 

 

Fig. 4. The impact of physiological noise correction (PNC), mapped in terms of relative variance in functional QSM data (left) for the same subject shown 
also in Fig.2 and Fig.3. Localized effects related to cardiac noise are most prominent at short TE (white arrows), while effects related to respiration noise are 

most prominent at longer TE (red circles). Plots on the right side of the figure indicate 𝜎𝑟
2 in three regions of interest when both respiratory and cardiac noise 

correction are applied (blue), as well as when only either respiration (red) or cardiac (yellow) noise corrections are applied 

 

Fig. 3. The impact of physiological noise correction (PNC) represented in terms of relative variance maps in local tissue phase images (left) for the same 

subject shown also in Fig.2. Plots on the right side of the figure indicate 𝜎𝑟
2 in three regions of interest when both respiratory and cardiac noise correction are 

applied (blue), as well as when only either respiration (red) or cardiac (yellow) noise corrections are applied 
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IV. DISCUSSION AND CONCLUSION 

Functional quantitative susceptibility mapping relies on 
phase image timeseries. This study shows that physiological 
noise due to the respiratory and cardiac cycles markedly 
affects phase image timeseries, more than conventional 
BOLD timeseries relying only on the fMRI signal magnitude. 
Here we demonstrated that retrospective physiological noise 
correction via RETROICOR is capable of reducing the 
temporal variance of phase image timeseries, and we showed 
the impact of respiratory and cardiac noise correction at 
different stages of the fQSM pipeline. Physiological noise 
correction in phase images after the unwrapping step exhibits 
a large TE dependence, with the impact of correction 
increasing with TE, as quantitatively measured in terms of 
relative temporal variance of the timeseries. The dominant 
noise component originates from respiration: gross magnetic 
susceptibility changes, as the lungs inflate and deflate, 
produce large-scale magnetic field fluctuations in the brain. At 
later stages of the fQSM processing pipeline, the low spatial 
frequencies are filtered out and the impact of pulsatile motion 
and flow-related noise ascribable to the cardiac cycle becomes 
dominant, especially at short echo times. Among the regions 
of interest that were investigated in this study, the brainstem 
exhibited the largest effects of cardiac noise correction. We 
observed values of 𝜎𝑟

2  > 1, mostly in the local tissue phase 
images acquired with the longest echo time in the brainstem 
region, suggesting the amplification of noise components 
correlated with respiration and cardiac cycles. It is likely that 
such noise components arise from tissue displacement with 
respect to voxel location, that is, they are a consequence of 
actual pulsatile motion which is not corrected for in this 
pipeline.   

To the best of our knowledge, this is the first study 
targeting the effects of physiological noise correction 
throughout the fQSM pipeline. Our observations suggest that 
physiological noise correction may be an important step in the 
fQSM processing pipeline to improve the quality of such a 
challenging type of data. Future work will investigate the 
effects of physiological noise correction on fQSM activation 
maps representing the brain response to a cognitive task. 
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