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Abstract—Diffusion tensor imaging (DTI) and functional mag-
netic resonance imaging (fMRI) are powerful neuroimaging tech-
niques providing complementary information on brain structural
(SC) and functional (FC) connectivity, respectively. Integrating
them gives a deeper understanding of brain structural-functional
interplay, which is particularly relevant in the search for brain
markers of psychiatric illnesses like major depressive disorder
(MDD). In this study, a novel DTI-driven fMRI approach was
developed and preliminarily tested to identify any alterations
in structural-functional network coupling in MDD. FC was
estimated from DTI-derived features within a normative healthy
control (HC) framework, using linear and quadratic models.
SC strength, shortest path length, and physical distance showed
significant influences on FC prediction in the linear model,
whereas path length was non-significant in the quadratic version.
The models were applied to a pilot test set of MDD and HC,
comparing the predictive performance of the models between the
two groups. The results showed reduced whole-brain similarity
between estimated and measured FC in MDD vs. HC. These
findings were confirmed on a smaller scale, showing significant
differences in the model reconstruction error of ROI-to-ROI
connectivity in key resting-state networks. These results suggest
that altered brain structural-functional interactions may underlie
MDD, providing new insights into potential biomarkers.

Index Terms—DTI, fMRI, brain connectivity, multimodal in-
tegration, major depressive disorder.

I. INTRODUCTION

In recent years, advances in neuroimaging techniques have
revolutionized our understanding of intricate workings of the
human brain, offering unparalleled insight into its structural
and functional properties. Diffusion tensor imaging (DTI) and
functional magnetic resonance imaging (fMRI) have emerged
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as powerful tools to study brain connectivity, each providing
a complementary perspective. DTI focuses on examining the
microstructural properties of white matter (WM), shedding
light on structural connectivity (SC) [1]. Conversely, fMRI
measures blood oxygen level-dependent (BOLD) signal fluc-
tuations, associated with neural activity, providing a means to
assess functional connectivity (FC) [2]. Given the inherently
interconnection between white and grey matter, the integration
of these modalities appears as a natural approach to investigate
the interplay between brain structure and function, which
is crucial for exploring cognitive and behavioral processes,
and psychiatric diseases, such as major depressive disorder
(MDD) [3]. Previous studies integrated these two modalities
through different perspectives and based on different ratio-
nales, such as to facilitate SC studies, guide neurosurgical
interventions, and construct functional correspondence using
structural consistence. DTI/fMRI data fusion methods include
fMRI-guided fiber tracking or filtering (fMRI assists DTI),
functional analyses based on DTI-derived network (DTI assists
fMRI), and joint DTI/fMRI analysis and modeling, in which
both modalities play equally important roles [4]. Despite these
advances, the brain structural-functional relationship remains
partially unknown, especially in psychopathology. Within this
context, MDD is a complex psychiatric disorder associated
with disruptions in both SC and FC [3]. While studies have
identified patterns of dysconnectivity, the underlying brain
mechanisms remain elusive.
In this study, a new DTI-fMRI integration method is intro-
duced. Using a DTI-driven fMRI approach, FC is inferred
from a set of DTI-derived features in a normative framework
of healthy young adults and subsequently applied to MDD pa-
tients. This cross-modality technique aims to identify possible
deviations in SC-FC coupling in MDD, offering new insight
into its neurobiological basis.
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II. METHODS

A. Participants and study protocol

Twenty-two subjects (aged 36.6±11.8 years, 11 M and 11
F) were included in the study, 17 healthy controls (HC) and a
pilot sample of 5 patients with MDD. Clinical diagnoses were
assessed using the Italian version of the structured clinical
interview for DMS-5. The exclusion criteria for all participants
included intelligence quotient<70, lifetime abuse of alcohol or
substances, history of head trauma with loss of consciousness,
neurological and neurodegenerative disorders.
The participants underwent a MRI session using a 3T Philips
Achieva DStream scanner (Philips, Best, The Netherlands)
equipped with a 32-channel head coil. A structural brain
image was acquired using a 3D T1-weighted TFE SENSE
sequence (field of view (FOV): 250 mm (FH) x 240 mm
(AP) x 180 mm (RL), voxel size: 1 x 1 x 1 mm3, TE: 4
ms, TR: 8 ms, flip angle: 8°) and used as morphological
reference. For diffusion weighted data, a SE-EPI sequence
was applied (FOV: 120 mm (FH) x 256 mm (AP) x 256 mm
(RL), voxel size: 2 x 2 x 2 mm3, TR: 5.5 s, TE: 90 ms, flip
angle: 90°). Diffusion was sampled along 64 directions with b-
value=1000. Two additional reference volumes were acquired
with no diffusion weighting (b-value=0). Two hundred fMRI
volumes were collected during eyes-closed resting state using
a multi-transmit T2*-weighted EPI sequence (FOV: 120 mm
(FH) x 256 mm (AP) x 256 mm (RL), voxel size: 2 x 2 x
2 mm3, echo time (TE): 30 ms, repetition time (TR): 2500
ms, flip angle: 90°). All subjects provided a written informed
consent to the study protocol, which was approved by the
Ethics Committee of Fondazione IRCCS Ca’ Granda Ospedale
Maggiore Policlinico, Milan, Italy, and was conducted in
accordance with the Declaration of Helsinki.

B. Brain network definition

DTI and fMRI data were processed in parallel, and then the
resulting unimodal SC and FC information was integrated in
a cross-modality framework. Both connectivity matrices were
derived using the same network nodes, which corresponded to
standard regions of interest (ROI) of the automated anatomical
labeling 3 (AAL3) atlas [5]. From the original set of 166 ROIs,
cerebellum and vermis were excluded due to incomplete cov-
erage in the FOV for some participants. Additionally, reuniens
(thalamic nuclei) were omitted because their definition on a
standard 0.5 mm3 template was not adequately captured in the
acquired imaging data. Consequently, a total of 138 ROIs were
retained as nodes for the connectivity analyses.

C. DTI analysis

All preprocessing steps for DTI analysis were performed
using FMRIB Software Library (FSL). Susceptibility-induced
distortions in the DWI data were corrected with topup,
while movement-related and eddy-current-induced artifacts
were mitigated using eddy. The corrected DWI volumes were
then used to reconstruct DTI data. Bedpostx was used to
estimate the fiber distribution within each voxel via Bayesian
estimation, modeling up to two main fiber orientations per

voxel and accounting for the presence of crossing fibers. The
estimated distributions informed a probabilistic tractography
analysis to map structural connections between the 138 ROIs.
Prior to tractography, the ROIs were transformed from stan-
dard space to diffusion space and used as seed masks for
probtrackx. A distance correction was applied to compensate
for connectivity attenuation with increasing tract length. The
output from probtrackx consisted of a 3D probability map and
the corresponding SC matrix. SC values underwent waytotal
normalization to account for seed region size, and rescaled to a
0-1 range. The SC matrix generated by probtrackx was asym-
metric, reflecting the directionality of structural connections
between regions. A threshold was applied to retain only the
top 20% of the strongest connections, after which the matrix
was binarized and used to compute the shortest path length,
defined as the number of links in the path connecting each
ROI pair.

D. fMRI analysis

fMRI data preprocessing was carried out using the standard
pipeline provided by HALFpipe toolbox [6]. The preprocess-
ing steps encompassed realignment of fMRI volumes, co-
registration with the anatomical image, segmentation of brain
tissue, and spatial normalization to the MNI standard space.
Additional commonly applied procedures were implemented,
including spatial smoothing with a 6 mm FWHM kernel, grand
mean scaling (mean=10,000), and Gaussian-weighted tempo-
ral filtering (width=0–125 s). A multi-metric comparison of
additional denoising strategies was performed, leading to the
regression of mean signals from white matter, cerebrospinal
fluid, and the global signal [7]. fMRI volumes were then
parceled using the AAL3 atlas, with BOLD signals extracted
by averaging the signal across all voxels within each ROI.
FC analysis was conducted using seed-based correlation to
evaluate instantaneous temporal synchronization across brain
regions. Pearson’s correlation coefficients were computed for
each pair of ROI-level BOLD signals.

E. DTI-fMRI integration

A DTI-informed approach was implemented using DTI
information to drive the fMRI analysis. This method aimed
to describe link-level FC as a function of SC-derived metrics
while inherently considering the structural architecture. The
DTI-driven fMRI method consisted of two main phases: model
definition and cross-validation (CV) assessment, and final
model training and testing.
Model design. A general linear model (GLM) was used
as baseline framework to predict link-level FC through a
set of anatomy-related features used as input. The model
was termed ”link-level” because each data point in the input
set corresponded to a ROI-to-ROI connection. Two different
model designs were considered: a linear model, using only
first-order terms of the regressors, and a purequadratic
version, using both first- and second-order terms. The indepen-
dent variables within the GLM design matrix, each of them
associated with a β coefficient, included SC between two ROIs
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Fig. 1. DTI-fMRI integration.

(quantifying the WM tract strength), the reciprocal of shortest
path length, and the reciprocal of the physical Euclidean
distance between the barycenters of two ROIs. The dependent
variable was the absolute FC value. Given the symmetry of the
FC matrix, only the upper triangular section was considered
for modeling. Instead, for SC values, the largest value between
SCa → b and SCb → a was used, making the SC measure
independent of directionality. The equations of the linear
and purequadratic models are reported in Fig. 1.
The model was trained on a homogeneous dataset comprising
12 HC (6 M and 6 F) aged between 26 and 29 years.
This process established a normative model, which serves as
reference framework for modeling reference patterns within a
control population, aiding in the detection and interpretation
of deviations in other groups [8]. By mapping SC features to
FC patterns in the HC cohort, the model aimed to infer the
relationship between FC and SC in young healthy adults.
CV assessment. Model performance was evaluated using k-
fold CV with k=4. Each fold consisted of a training set of
9 subjects and a validation set of 3 subjects, with each sub-
ject contributing with 9,453 observations. To mitigate biases
arising from the small sample size and subject-specificity,
three separate models were trained per fold, each comprising
28,359 random observations uniformly distributed across the 9
training subjects. The validation was based on the average of
the estimated coefficients. The performance of the two models
was assessed in the test CV folds using two primary mea-
sures: i) statistical significance of the β coefficient estimates,
assessed via p-values, and ii) similarity between estimated
FC and observed FC, measured using the Dice coefficient on

binarized connectivity matrices (retaining the 40% strongest
connections). For the second metric, the modeled FC was com-
pared against both the empirical FC and the empirical FCxSC
matrix, which was derived by element-wise multiplication of
FC and SC values, thus emphasizing FC connections supported
by strong WM pathways and highlighted SC pathways that
aligned with resting-state functional activity.
Model training. Following CV assessment, the final linear
and purequadratic models were trained on data points
from half of the initial training dataset (6 homogeneous HC),
and tested on the remaining half for consistency.
Model test on diagnosis. The trained linear and
purequadratic models were subsequently tested on a pilot
sample of 5 MDD patients (aged 46.6 ± 7.9 years, 2 M and 3
F) (test_MDD) and on a matched sample of 5 HC (aged 49.2
± 8.6 years, 3 M and 2 F) (test_HC) to evaluate potential
diagnosis deviations in the structural-functional coupling com-
pared to the normative pattern, removing age- and sex-related
variability. The models’ performance was quantified on the
basis of the whole-brain similarity between the estimated and
observed FC, using the Dice coefficient on binarized matri-
ces. Additionally, reconstruction error at the link level was
computed as the pointwise difference between estimated and
measured FC values. These metrics were calculated separately
for test_MDD and test_HC sets. Group-level analyses were
performed using a statistical GLM approach, with age, sex, and
diagnosis as covariates, and Dice coefficients or reconstruction
errors as dependent variables.
Finally, a group-level fMRI analysis was conducted using a
GLM with age, sex, and diagnosis as covariates, and mea-
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sured FC values as response variable. This analysis aimed to
compare the results obtained using the normative DTI-driven
FC model against those derived from unimodal FC.

III. RESULTS AND DISCUSSION

The implemented DTI-driven fMRI framework defined a
cross-modality method to estimate FC from a set of SC fea-
tures, and to identify any MDD deviations from the normative
model.
Model performance. The p-values associated with the β
coefficients for linear and purequadratic models are
reported in Table I and II, respectively. For the linear
model, all structural parameters (SC, path length and phys-
ical distance) showed a significant effect on FC prediction
(p-value<0.05). Conversely, when second-order terms were
included, the relevance of ROI-to-ROI distance decreased,
as shown by the non-significant p-values for path length
regressors.

TABLE I
LINEAR MODEL: ESTIMATED GLM COEFFICIENTS AND STATISTICS

Regressor 4-fold CV Final model
β p-value β p-value

Intercept 0.11 ≈ 0 0.11 ≈ 0
SC 0.08 8.98e-05 0.06 3.00e-03

PathLength 0.03 6.74e-07 0.02 1.48e-04
PhyDist 0.36 4.69e-124 0.37 2.20e-138

TABLE II
QUADRATIC MODEL: ESTIMATED GLM COEFFICIENTS AND STATISTICS

Regressor 4-fold CV Final model
β p-value β p-value

Intercept 0.13 5.76e-251 0.12 5.31e-248
SC 0.42 2.64e-17 0.45 3.33e-20

PathLength -0.03 0.13 -0.03 0.12
PhyDist 0.12 2.96e-14 0.12 1.51e-05

SC2 -0.65 7.06e-04 -0.73 7.07e-17
PathLength2 0.02 0.16 0.02 0.21

PhyDist2 0.47 2.74e-19 0.48 1.27e-21

Table III presents similarity results for both models, quan-
tifying their ability to reconstruct FC matrix by comparing it
to the measured FC and the combined FCxSC matrix. The
results showed that both models perform similarly in recon-
structing FC matrix, suggesting that incorporating quadratic
terms for SC and physical distance can efficiently replace the
information carried out by path length regressors, which were
not significant in the purequadratic model.

TABLE III
SIMILARITY RESULTS

Modeled FC vs. Measured FC FCxSC
Linear model 41.8% 66.2%

Purequadratic model 41.7% 71.3%

Notably, both models integrated structural information when
modeling FC, as shown by the higher similarity between the

reconstructed connectivity matrix and FCxSC, compared to
its similarity with measured FC. These findings indicate that
both approaches capture functional and structural network
characteristics, offering a more comprehensive representation
of brain connectivity.
Model test on diagnosis. The models were trained in a
normative fashion and their performance was assessed to test
for diagnosis effect. The coefficients of the final models,
consistent with those obtained during 4-fold CV, and the
corresponding p-values are presented in Table I and II.
In the test sets, the prediction performance at the whole-brain
level, assessed by the Dice coefficient, revealed that the sim-
ilarity between real and modeled FC was significantly lower
in MDD patients compared to HC for the purequadratic
model and trended toward significance for the linear model,
as shown in Table IV. This finding suggests that MDD has a
significant impact on the structure-function brain connectivity
relationship. In contrast, no significant effects were observed
for age or sex regressors (p-value>0.05).

TABLE IV
MODEL TEST: DICE COEFFICIENT RESULTS

Covariate Linear Purequadratic
t-stat p-value t-stat p-value

Intercept 11.12 3.15e-05 14.30 7.31e-06
Age 0.40 0.52 0.37 0.73
Sex 0.93 0.39 0.94 0.38

Diagnosis -2.38 0.054 -2.63 0.039

When evaluating the model performance at the link
level, MDD showed a significant effect on pointwise re-
construction error (p-value<0.001) for both linear and
purequadratic models. Significant differences in the brain
structural-functional interplay between MDD and HC were
observed in links belonging to important resting-state networks
as the default mode and salience networks, in interaction with
areas of the limbic systems, all structures that are involved in
MDD psychopathology (see Table V and VI).
The link-level results derived from the linear and
the purequadratic models are consistent in terms of
diagnosis-related differences, supporting the framework ro-
bustness. The significant links that are distinct between the
two versions suggest deviations in SC and physical distance
between the two ROIs rather than in the path length, which
was not significant in the purequadratic model. The
comparison of overlap between DTI-derived and unimodal
fMRI findings (in Table VII) offers deeper insights into brain
function-anatomy interdependencies. While overlapping re-
sults in fMRI and DTI-fMRI analyses likely reflect functional
alterations, differences identified in the DTI-driven fMRI anal-
ysis but absent in the fMRI analysis may be linked to structural
alterations. This interpretation is supported by the observation
that inaccurate FC predictions arise when derived from altered
SC-related information, as evidenced by the higher variance
in FC prediction observed for the same link in MDD vs. HC.
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TABLE V
LINEAR MODEL: SIGNIFICANT RECONSTRUCTION ERRORS FOR DIAGNOSIS

Label ROI 1 Label ROI 2 t-stat p-value
Precentral L Temporal Sup R -7.21 3.58e-04

Frontal Mid 2 L Thal Pul R 6.27 7.68e-04
Frontal Inf Tri R Putamen L -5.99 9.73e-04

Frontal Inf Orb 2 L Hippocampus L 6.38 6.96e-04
Supp Motor Area L Occipital Mid L -6.26 7.69e-04

OFClat L Precunes R 7.08 3.96e-04
OFClat L Temporal Pole Sup R 7.85 2.26e-04
Insula R Thal MGN L -7.29 3.37e-04

ParaHippocampal L VTA L 7.11 3.88e-04
Parietal Sup R Temporal Pole Mid L 6.97 4.33e-04

Paracentral Lobule R Thal MGN L -7.12 3.85e-04
Paracentral Lobule R ThalILR -6.61 5.76e-04

Putamen L Thal LP R -6.33 7.27e-04
Putamen R Red N L 6.21 8.05e-04

Temporal Sup R LC R -6.20 8.09e-05
Thal LP L ACC sub L 6.40 6.88e-04
ACC sup L Red N L -6.51 6.26e-04

TABLE VI
QUADRATIC MODEL: SIGNIFICANT RECONSTRUCTION ERRORS FOR

DIAGNOSIS

Label ROI 1 Label ROI 2 t-stat p-value
Precentral L Temporal Sup R -7.28 3.43e-04

Frontal Sup 2 R Thal Pul R 6.63 5.67e-04
Frontal Inf Orb 2 L Hippocampus L 6.09 8.88e-04
Supp Motor Area L Occipital Mid L -6.17 8.30e-04

OFClat L Precunes R 7.04 4.09e-04
OFClat L Temporal Pole Sup R 7.83 2.28e-04
Insula R Thal MGN L -6.92 4.50e-04

ParaHippocampal L Temporal Pole Mid L -6.14 8.50e-04
ParaHippocampal L VTA L 6.59 5.85e-04

Parietal Sup R Temporal Pole Mid L 6.86 4.69e-04
Paracentral Lobule R Thal MGN L -6.71 5.28e-04

Putamen L Thal LP R -6.21 8.07e-04
Putamen R Red N L 6.08 8.97e-04

Temporal Sup R LC R -6.18 8.22e-05
Thal LP L ACC sub L 6.29 7.50e-04
Thal LP R Thal VL L -6.02 9.44e-04
ACC sup L Red N L -6.55 6.08e-04

TABLE VII
UNIMODAL FMRI RESULTS FOR DIAGNOSIS

Label ROI 1 Label ROI 2 t-stat p-value
Precentral L Temporal Sup R -6.03 9.42e-04

Frontal Mid 2 L Thal Pul R 6.58 5.93e-04
Frontal Inf Orb 2 L Hippocampus L 6.50 6.33e-04

Rolandic Oper R Thal VPL L -6.41 6.78e-04
Olfactory R Thal MGN L -6.25 7.75e-04
OFClat L Temporal Pole Sup R 7.04 3.13e-04
Insula R Thal MGN L -7.07 3.99e-04

ParaHippocampal L Temporal Pole Mid L -6.15 8.46e-04
ParaHippocampal L Thal AV L -7.95 2.11e-04
ParaHippocampal L Thal PuA L -7.51 2.88e-04

Fusiform R Red N L 7.22 3.55e-04
Pallidum L ACC pre L -6.10 8.84e-04

Temporal Inf R ACC sub L 6.78 5.01e-04
Temporal Inf R LC R -7.87 2.21e-04

Thal LP L Acc sub L 6.77 5.07e-05
Thal LP R Thal VL L -6.88 4.64e-04
Thal VL R Thal MDm L -6.61 5.75e-04
ACC sup L Red N L -6.18 8.24e-04

IV. CONCLUSIONS

In this study, we introduced an innovative integrated DTI-
fMRI approach to explore the complex structural-functional
interplay in brain networks. This method enabled the def-
inition of a novel representation of FC that intrinsically
incorporates structural information, as evidenced by the sig-
nificant effects of the predicting variables. A key strength
of our approach lies in its interpretability, a crucial factor
in clinical biomarker identification. However, future advances
including larger datasets and more sophisticated models, as
deep learning algorithms, will facilitate the exploration of
more intricate dependencies. Training our DTI-driven fMRI
model in a healthy cohort allowed us to establish a norma-
tive framework against which subject-specific alterations in
clinical populations can be assessed. Our preliminary findings
suggest that similarity between predicted and measured FC is
significantly reduced in MDD, potentially indicating disrupted
anatomical-functional coupling in brain networks. Notably,
regions implicated in MDD exhibited higher reconstruction
errors, reinforcing the validity of our results [3]. Altered
structural-functional coupling was observed within circuits
involved in depressive mechanisms, including the default mode
and salience networks, as well as reward, cognitive control and
limbic circuits. These findings align with previous research
demonstrating hyperconnectivity in the default mode network
in MDD, which was linked to excessive rumination, negative
thoughts, and heightened self-referential processing [9]. In
conclusion, our preliminary results support the validity of in-
tegrating DTI and fMRI information, including the conversion
of DTI-related features into a new FC measure, to uncover the
structural-functional link in brain networks. This framework
holds promise for both physiological and psychopathological
investigations, paving the way for identifying neuroimaging-
based markers for MDD.
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