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Abstract—Decentralized decision-making (a.k.a. social learn-
ing) deals with a group of agents, connected according to a graph,
which cooperate to form their beliefs about some hypotheses of
interest. Under mild technical conditions regarding the graph
connectivity and the identifiability of the statistical model, the
belief of each agent ultimately places all the probability mass on
the true hypothesis when sufficient time to learn is granted. Less
is known as regards the evaluation of the learning performance.
One criterion that has been proposed is the rejection rate,
i.e., the rate at which the belief about the wrong hypotheses
converges to zero. We show in this work that this metric is not
appropriate, since it leads to the paradoxical conclusion that the
optimal Bayesian decision rule can be defeated by other rules.
In contrast, we show that proper performance measures are the
error probability and the error exponent, namely, the rate at which
the error probability converges to zero. We compare different
schemes in terms of these metrics, establishing useful connections
between decentralized implementations and the optimal Bayesian
system. Several interesting phenomena emerge. For example, we
show that traditional social learning can be sensitive to the initial
state and that the recently proposed doubly Non-Bayesian (NB?)
learning scheme solves this issue.

Index Terms—Social learning, error probability, large devia-
tions, rejection rate.

I. INTRODUCTION AND RELATED WORK

In the last few years, the theory of social learning (SL) [1]-
[8] has been developed to characterize distributed decision-
making systems. In these systems, spatially dispersed agents
wish to accomplish a classification task to decide which
hypothesis, chosen from a finite collection, is actually gen-
erating the observed data. To this end, the agents form their
beliefs about each hypothesis (i.e., they assign probability
scores to the hypotheses) and then opt for the hypothesis that
maximizes their beliefs. The agents are allowed to cooperate
only locally, i.e., with their neighbors. Moreover, for privacy
or computational/memory constraints, they cannot share the
raw data or the private decision models, but only their beliefs.

One fundamental result in SL theory is the following: given
an infinite stream of data, under mild technical conditions the
belief of each agent about the true hypothesis ultimately places
the whole probability mass on the true hypothesis. It is also
shown that the belief about any wrong hypothesis vanishes
exponentially fast, with a certain rejection rate [5], [6]. Based
on this type of result, there are works in the literature that
compare different SL strategies in terms of the rejection rates
[9], [10]. For example, in [9] a strategy is proposed that can
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exhibit a larger rejection rate than traditional SL. However,
traditional SL is known to attain (in the precise sense specified
later) the optimal performance guaranteed by the centralized
Bayesian posterior. This would imply that the scheme pro-
posed in [9] would outperform the optimal centralized system,
raising the fundamental question of whether the rejection rate
is an appropriate performance measure. One contribution of
this work is to show that it is actually not. Motivated by
this finding, we then envisage that the error probability is
one meaningful performance criterion. However, due to the
lack of analytical relations to compute the error probability,
we replace it by the error exponent, which quantifies the rate
at which the error probability vanishes as the size of the
data streams increases. Recent results [11] have shown that
traditional social learning attains the optimal error exponent of
the centralized Bayesian posterior only when the combination
matrix is doubly stochastic. When it is simply left stochastic,
a different strategy is available [11] that guarantees asymptotic
optimality. As a second contribution, we show that asymptotic
optimality in terms of error exponents can hide factors that
matter in the error probability. In particular, we focus on the
effect of the initial belief vectors. This effect is commonly
overlooked. This is because, in the literature on decentralized
optimization and learning, the initial states are asymptotically
washed out and have no effect on the mean-square-error and
related performance metrics. We ascertain that this is no longer
the case in the decision-making setting. Specifically, we show
that the impact of the initial beliefs is washed out in terms of
the error exponents, but not in terms of the error probabilities.
We also show that the NB? strategy proposed in [11] is able
to remediate this problem.

II. BACKGROUND AND NOTATION

Let © = {61,...,01} be a set of H hypotheses. In social
learning, K agents cooperate to discover the true state of
nature, 0, assumed included within the set ©. Each agent
k=1,...,K, at time t = 1,2,..., has access to a local
stream of data samples x,; € Xj (we use bold notation
for random quantities). The data are independent over time,
and may be dependent across the agents. Ideally, to solve
the decision-making problem optimally, the agents should
compute the true posterior probabilities for any 6 € O:

t
ITHOETION | EZNCIEN- ) (1)
=1

where 7(f) is the prior probability of 0, £ (:|6) is the joint
likelihood model, and the symbol o hides the proportion-
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ality constant needed to make p} = [} (61),..., 15 (0n)]
a probability vector. The true distribution of [x1,,. .., Tk (]
is fiot(:|6p). Usually, the true posterior given by (1) cannot
be implemented in a decentralized setting, especially because
the agents cannot share their raw data, they are allowed to
communicate only with their neighbors, and are unable to build
the joint likelihood model [1].

To perform social learning, each agent k£ employs instead
a marginal likelihood model /¢ (-|f). The agents’ opinions
about the hypotheses are represented by a belief vector, i.e.,
a vector of probability scores assigned to each 8 € © at each
time ¢, defined as g = [pr,e(01), it (02), ..., it (Om)]-
Then, agent k chooses the hypothesis that maximizes its belief,
which, for the case of the true posterior, would correspond to
the optimal maximum a posteriori probability (MAP) rule [12].

A. Traditional Social Learning

In traditional social learning, the belief vectors across the
agents are updated iteratively by the following two steps:

Y, (0) o< prt—1(0) L (@ e]6), (22)
K

e, (0) o H [;,(0)]"%, (2b)
j=1

The beliefs are initialized with some deterministic values
ti,0(6). The first step (2a) performs a local Bayesian update
by using the fresh data sample x, ¢, yielding an intermediate
belief 1y (). The second step (2b) pools the beliefs of
neighboring agents. Specifically, the beliefs are (geometrically)
weighted by the nonnegative coefficients a;;, collected into the
combination matrix A = [a;;,] € RE*K_ The weights a;, are
nonzero only when agent k can receive information from agent
j. We adopt the following standard assumption.

Assumption 1 (Combination matrix). The combination ma-
trix A is 1) left stochastic, which means that aj, > 0 and
Z;il a;r = 1; and 1ii) primitive, which means that it is
irreducible and has a single eigenvalue (equal to 1) on the
spectral circle [12].

The typical question is whether the SL strategy (2a)-(2b)
allows all the agents in the network to detect the true hypoth-
esis. This is possible if at least one agent is able to correctly
detect the true hypothesis [1], [2].

Assumption 2 (Global identifiability). For each 6 # 0, there
exists at least one agent k such that D(Ly g,||Ck,0) > 0, where
D(lk0,|lx,0) denotes the Kullback-Leibler (KL) divergence
between Uy, (-|0) and {i(-|0). Moreover, the KL divergence
between any pair of hypotheses is assumed finite.

Under Assumptions 1 and 2, the social learning strategy in
(2a)-(2b) achieves truth learning in the sense that, for all &,

P (00) —= 1, 3)

t—o00

a.s.
where —— denotes almost-sure convergence [1].
t—o00

III. EXAMINING THE REJECTION RATE

Let py, . be a belief vector obtained from some construction
that can also be different from (2a)-(2b). Assume that, for all

0 # 6o,

2 p(6,60) > 0, 4)

t—o0

1 1

£ ()
then p(6,6p) is called the rejection rate (of 6 when 6 is
true). Note that (4) implies that gy .(6p) converges to 1
(exponentially) with probability 1.

While it is always possible to compare two strategies
in terms of their rejection rates, this does not necessarily
leads to a meaningful performance comparison since, as the
following lemma indicates, it is always possible to modify
either strategies to get an arbitrarily better rejection rate.

Lemma 1 (Arbitrariness of the rejection rate). Let p1y, ¢ be
a belief vector achieving rejection rates p(0,0y), for 6 # 6,.
Then, it is always possible to construct another belief vector
[ii.+ that achieves rejection rates p(0,600) > p(8,00).

Proof: Let, for an arbitrary b > 1,
fira (6) oc 4l (6). 5)

Observe that gy .(6p) converges almost surely to 1 by as-
sumption and, hence, so does fix (o). Then, to compute the
rejection rate we can compute the limit of (1/¢)log ’f{“};‘t((eg)).
We have, for any 6 # 6j: Y

1 llkt(eo) b Nk.t(ao) as. A~
—log —=——— = - log ———= —— bp(0,6y) = p(0,6y),
P8 @) T 1% @) 1o p(0,60) = 0()6)
where p(6,00) > p(6,60) since b > 1.

|

Lemma 1 reveals that, given an arbitrary SL strategy, it is
always possible to modify that strategy by adding (5) to it
and attain any desired rejection rate. This suggests that the
rejection rate is not an effective metric to evaluate decision-
making strategies.

Example 1 (One-bit quantized observations). Consider the
following decentralized binary classification problem. Let x
be unit-variance Gaussian random variables, independent and
identically distributed (iid) across time and space, with means
mg, and mg, under the two hypotheses. Let, for v € R, g+ =
I[xk,, > ], where I is the indicator function, which is equal
to 1 if the condition defined by its argument is true, and is
0 otherwise. That is, g is a one-bit quantized version of
.+ Accordingly, the statistical distribution of gy, ¢ is uniquely
determined by the probability

Plgx,c = 116] = Q (v — mq) ,

where @ is the complementary cumulative distribution func-
tion of the standard normal. Since gy is a transformation
of the original data xj ., it is obvious that any decision
strategy based on gy, ; cannot outperform the optimal decision
strategy based on xj ;. Nevertheless, according to Lemma 1,
we can design a learning scheme based on gy ; that achieves

0 € {61,0>}, @)
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an arbitrarily large rejection rate. We now elaborate on this
aspect. Denote by “1(52 (0) the belief of agent k at time ¢
computed with the traditional social learning scheme (2a)-
(2b) applied to the quantized observations. Accordingly, the
marginal likelihood of each agent k is ¢(9)(y|0) = P[qy; =
y|0], for y € {0,1}. Under Assumptions 1 and 2, and with
nonzero initial beliefs, one can show that, for all 8 # 6, [1]

1 L as (@) || (@)
P o DL
The KL divergence on the RHS represents the rejection rate of
the SL scheme based on the quantized variables. Likewise, it
can be shown that the optimal (centralized) Bayesian strategy
that computes the true posterior (1) based on the unquantized
observations @, ; would reach a rejection rate K -D({g,||¢y)
(where we suppressed the subscript k in the likelihoods due
to the identical distribution across the agents) [1]. Observe
that, in view of the data processing inequality for the KL
divergence, we have D(fg,||¢g) > D(éé?Hféq)) [13]. On the
other hand, by applying Lemma 1, we can modify the scheme
based on the quantized variables by constructing a belief
;1,(52(9) o [,u,(cql)t (6)]°, with b chosen to attain a rejection rate
b- DV ||65V) > K- D(fg,||6), i.e., exceeding the rejection
rate achieved by p. As a result, if the rejection rate is taken as
a performance proxy, we reach the conclusion that a decentral-
ized scheme based on quantized variables can outperform the
optimal centralized scheme based on the original unquantized
variables, which appears to be a suspicious result.

IV. ERROR PROBABILITY PERFORMANCE

The true posterior p}(6) is the best information available
regarding the characterization of the link between the data
and the hypotheses. As a result, it allows us to make the best
inference possible.

Assume now that we want to judge the goodness of a
decision strategy in terms of the rejection rate. Let p*(6,6o)
be the rejection rate achieved by the true posterior. In view
of Lemma 1, we can always find another strategy that would
guarantee a rejection rate larger than p*(6,6y). For example,
with reference to Example 1, in place of the optimal posterior
of the data x;; we could use a strategy based on one-bit
data and modify it so as to increase arbitrarily the rejection
rate. This would imply that there are (actually, infinitely many)
strategies that converge to the ideal belief vector faster than the
optimal posterior. This suggests that the rejection rate is not
appropriate to measure the goodness of an inferential strategy.

The optimal posterior tells us what is the best level of
confidence we must place on a given decision. If the actual
probability that 6 is true given the observed data realization
is equal to 0.9, we know from decision theory that 90% is
the best level of confidence we must place on our decision.
We should be neither more nor less confident. Using another
strategy that increases the rejection rate by placing more
mass on the true hypothesis is not a real gain, since we are
mistakenly increasing our level of confidence. In other words,

the belief about the true hypothesis should converge to 1 as
fast as dictated by the optimal posterior, but not faster.

One possible misunderstanding in the interpretation of the
rejection rate arises from overlooking the randomness in the
considered problem. Since the belief is random, whatever the
speed of convergence (i.e., the rejection rate) is, there will
always be a nonzero probability of error, which cannot be
ignored when comparing different strategies. To gain insights,
refer back to Example 1. The MAP rule based on (1) (i.e.,
on the unquantized data) minimizes the error probability.

Consider next the belief /ngqi obtained by applying traditional

SL to the quantized data, and its modified version [1,(3%,

which achieves a rejection rate larger than the optimal MAP

rule. Observe that the error events {ﬂ,(ﬁl(@o) < ﬁ,iqz(H)} are

equivalent to the events {u,(cqi(ﬁo) < uéqi(ﬁ)}, which means

that 1'% and 2{Y) make the same mistakes. Moreover, they

make more mistakes than the optimal posterior p;. Thus, the
higher rejection rate is not rewarding. This can be explained
in terms of the randomness in the data. Indeed, consider the

modified belief ﬁ,iqi and the optimal belief p} at a given time

instant ¢t. For some data realizations, [Lg leads to correct

decisions and, in view of its higher rejectioh rate, discards the
wrong hypotheses with more confidence than p;. However,
this is not sufficient to outperform the MAP rule, since ﬂ}fl
is not optimal and, hence, there are more realizations where
it decides wrongly while 1} does not.

A. Error Probability and Error Exponent

From the previous discussion we conclude that a meaningful
criterion to evaluate the performance of social learning strate-
gies is the error probability achieved by each individual agent.
Specifically, recalling that the decision is made by taking the
hypothesis that maximizes the belief, the error probability of
agent k given that the true hypothesis is 0 is given by

Pt (00) = Py, [er,:(00) < par 1 (0) for at least one 6 # 6],

©))
where the notation [Py, signifies that the true hypothesis is
6o. Then, the total error probability of agent k is obtained by
averaging over the prior distribution 7, yielding

Prt = Z (60 )pr,t (0o).

0p€O

(10)

Unfortunately, closed-form relations to express this probabil-
ity are seldom available. However, suitable asymptotic (as
t — oo) performance measures related to the error probability
can be obtained by exploiting the asymptotic properties of
the log belief ratios log(pe,:(6o)/tek,+(6)) [1]. One of the
performance measures particularly suited to decision problems
is the error exponent, which quantifies the rate at which the
error probability converges (exponentially fast) to 0 as ¢ — oo.
This exponent is given by

1
lim = logpys = E, (11)
t—oo t ’
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which can be evaluated by resorting to the large deviations
theory [14], [15]. Different from the rejection rate, the error
exponent refers to convergence rate of the error probability.

It is shown in [11] that, for statistically independent agents,
traditional social learning attains the same error exponent as
the optimal centralized Bayesian solution when the combina-
tion matrix is doubly stochastic. When it is only left stochastic,
it is necessary to modify traditional social learning into the so-
called non-Bayesian-non-Bayesian (NB?) strategy

N0) o uﬁ_“fii(e) O (@hal0),  (12a)
RIC H [WB (0 ] : (12b)

which replaces the Bayesmn update (2a) with a non-Bayesian
update where the likelihood is raised to the k-th entry vy of
the Perron vector associated with the combination matrix A.

B. Limitations of the Error Exponent

As already indicated, the theory of large deviations provides
appropriate tools to compute the error exponent. However, ex-
pressions like (11) are equivalent to py, ; = exp {—E't + o(t)},
where by o(t) we define a quantity such that lim;_, o, o(t)/t =
0. This means that o(t) can be a constant or even a term that
diverges to co as t — oo. Accordingly, we may have strategies
that share the same error exponent but have different error
probabilities, which implies that the error exponent cannot be
used to approximate error probabilities.

Example 2 (Role of the initial beliefs). Let x; ; follow the
same Gaussian model described in Example 1. Assume that
the agents run a traditional SL algorithm. We want to show
that the error probability of traditional SL may suffer when
the initial beliefs are non-uniform across the hypotheses. To
magnify this specific aspect, we consider the favorable case
where all agents have the same initial beliefs ;0 = 7 and
the network is fully connected. We will see that even in this
favorable case the uneven initial belief assignment matters.
By unfolding the recursion in (2a)-(2b), we can write, over
a fully connected network with aj; = 1 /K for all j and k,

Hit(01) 1 ¢ Oi( 1)
o8 i e(02) et (02) A K ZZlog

Up(xh,r|02)
where we defined ¢ £ log(m(0y)/7(62)). A similar expression
is obtained for the true posterior in (1), namely,

O (- 1601)
€+ZZI gﬁk (k- |02)

T=1k=1

13)

(14)

It is apparent that (13) and (14) are basically the same, with
the only difference being the factor 1/K that scales the sum
of log likelihoods in (13). Moreover, it is also apparent that
the term due to the initial beliefs is independent of ¢ and
becomes immaterial as ¢ — co, which would also suggest that
the scaling factor 1/K becomes asymptotically immaterial.
However, there is a subtle effect here that needs to be carefully

examined. To this end, let us evaluate the error probability.
This is doable in this example, due to the Gaussian model.

Assume that the true hypothesis is 8;. Using (13), we can
compute the error probability in (9) as

02)
01)="P > 15
Pr,t(601) ell 7211;1 ﬁkwk 9)_5 (15)
It is readily verified that, when 6, is true, log % is

Gaussian with mean —A and variance 2A, where A = (mg —
my)? /2 is the KL divergence between the two hypotheses [16].
Using this result in (15), we get

§+tA | 1
V2K |
where we have approximated the @Q-function as Q(z) =~
1/2exp{—2?%/2}. Following similar steps, for the optimal
Bayesian system we would get from (14)

Pre(01) = Q (

§+KtA> 1 kot e ¢
*(0;) = ~ _e T4 T32TAKAT 17
p; (61) Q< SRIA D) a7

By symmetry, it is readily seen that the error probability when
65 is true correspond to replacing £ with —¢ in (16) and (17).
Accordingly, from (10) we can write the error probabilities for
the decentralized and the optimal system as

2
~ ik (w(al)e*§ +(1 —w(el))(ﬁ) , (18)
1 ;€2
P~ e P~ e (ﬂ(@l)e_% +(1- w(el))e%> .
Comparing (18) against (19), we see that, as ¢ — oo, the two
expressions are equivalent at the leading exponential order:

1 log 1t — KA
718 =T
However, we also see that the term due to the initial belief is
reduced by a factor K in the optimal Bayes scheme, which

yields the following limit:

m(01)e

m(6)e 5 + (1—m(61))e
which, using the definition of &, after some straightforward
algebraic manipulations gives

lim pL*t ~ cosh <(K_21)§> >0,

t—o0 Dy

1  kat
Prt~ e 4
2

19)

o1 .
tlgrolo t log pi+(t) = tll}go (20)

4 (L-7(6h))e T

&
2

Pkt
m =5t

~

21

t—o00 p;

(22)

which is strictly positive for all K > 1, revealing that,
even asymptotically, the error probability of the decentralized
system is larger than the error probability of the optimal
system. This fact does not contradict the large deviation
estimate (which shows that the two strategies share the same
error exponent), since it is well known that the error exponent
gives the leading-order exponential term, while neglecting
possible higher-order corrections at the exponent. Notably, it
can be shown that the NB? strategy (12a)-(12b) is able to
compensate for the uneven initial belief assignment, since the
factor vy, to which the likelihood is raised (in the considered
case vy = 1/K) would actually turn (13) into (14).
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Fig. 1: Error probability (1/K) 21521 Dk,t» where py ; is defined by (10). Left: Uniform initial beliefs. Middle: Uneven initial
beliefs, with 7(61) = 0.2, 7(62) = 0.3, 7(f3) = 0.5 for all agents. Right Network topology.

V. ILLUSTRATIVE EXAMPLES

In this section we present the results of some numerical
experiments conducted in the following setup. We consider the
network topology shown in Fig. 1. On top of this topology,
we build a doubly stochastic combination matrix by applying
the Metropolis policy [12]. The decision problem is a ternary
classification problem. The observations are iid over time and
across the agents. Each observation x ; is a five-dimensional
vector whose entries are iid unit-variance Gaussian variables
with means 0, 0.05, and 0.1 under hypotheses 61, 05, and 5.

We will compare the following strategies: traditional SL
(2a)-(2b); the strategy that, in step (2b), replaces the weighted
geometric average of the intermediate beliefs with their arith-
metic average [1], [3]; the SL algorithm proposed in [9]; the
NB? strategy (12a)-(12b); and the optimal Bayesian classifier.

The performance indices used to compare these strategies
are the error probability and the error exponent. Before exam-
ining the results, let us summarize the guarantees that we have
from the theoretical analysis. We know that: i) NB? attains the
optimal error exponent (this is also true for traditional social
learning when the combination matrix is doubly stochastic).
As a result, no other strategy can outperform NB? in terms
of error exponent; ii) the gain in error exponent can neglect
sub-exponential corrections that matters in terms of error
probability. For example traditional SL suffers from uneven
initial beliefs, but NB2 is able to compensate for this effect.

In the left panel of Fig. 1, we compare the five strategies
when the initial beliefs are uniform. As guaranteed by the
theoretical results, traditional SL and NB2 guarantee the same
error exponent as the optimal Bayesian classifier. Since no
strategy can beat the optimal Bayes system, no strategy can
have a better exponent. Accordingly, arithmetic averaging and
the SL algorithm in [9] feature a worse (i.e., smaller) error
exponent. In this particular example, arithmetic averaging is
outperformed by the SL algorithm in [9].

In terms of error probabilities, the better exponent allows
traditional SL and NB? to outperform the other two strategies.
Moreover, since the initial beliefs are uniform, the error
probabilities of traditional SL and NB? are also equal.

The case of uneven initial beliefs is addressed in the middle
panel of Fig. 1. Comparing with the left panel, we see
that traditional SL suffers from the uneven initial beliefs, as
discussed in Example 2. We also see that NB? remediates
this issue and gets closer to the optimal error probability.
The comments and relative ordering pertaining to arithmetic
averaging SL and to the algorithm in [9] are unchanged.
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