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Abstract—Social learning strategies enable agents to infer the
underlying true state of nature in a distributed manner by
receiving private environmental signals and exchanging beliefs
with their neighbors. Previous studies have extensively focused
on static environments, where the underlying true state remains
unchanged over time. In this paper, we consider a dynamic setting
where the true state evolves according to a Markov chain with
equal exit probabilities. Based on this assumption, we present a
social learning strategy for dynamic environments, termed Dif-
fusion α-HMM. By leveraging a simplified parameterization, we
derive a nonlinear dynamical system that governs the evolution
of the log-belief ratio over time. This formulation further reveals
the relationship between the linearized form of Diffusion α-HMM
and Adaptive Social Learning, a well-established social learning
strategy for dynamic environments. Furthermore, we analyze the
convergence and fixed-point properties of a reference system,
providing theoretical guarantees on the learning performance
of the proposed algorithm in dynamic settings. Numerical ex-
periments compare various distributed social learning strategies
across different dynamic environments, demonstrating the impact
of nonlinearity and parameterization on learning performance in
a range of dynamic scenarios.

Index Terms—adaptive learning, Bayesian inference, hidden
Markov model, nonlinear dynamical systems, social learning

I. INTRODUCTION AND RELATED WORK

Social learning refers to the process by which networked
agents infer the underlying true state of the environment by
gathering information and sharing beliefs. In multi-agent or
social networks, Bayesian and non-Bayesian social learning
models [1]–[5] have been extensively employed in economics,
sociology, and engineering to characterize the behaviors of
financial markets, social groups, and multi-agent systems [6]–
[8]. Traditional models have mainly focused on static environ-
ments. Recent research has increasingly explored online social
learning models in dynamic settings, such as adaptive social
learning [9], [10] and diffusion hidden Markov modeling
strategies [11], [12].

In this paper, we consider the online social learning prob-
lem, where a network of N agents labeled by k = 1, . . . , N
receive noisy observations/signals ξk,i (bold notation is used
for random variables) of the evolving state at each time step
i ≥ 1. Their aim is to collectively estimate the underlying true
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state θ⋆i at each time instant i given the streaming observations
ξk,1, . . . , ξk,i.

For simplicity, we assume that the true state θ⋆i belongs to
a discrete set of M possible states Θ = {θ0, θ1, . . . , θM−1}.
Each agent k assigns a belief to each state θ ∈ Θ at each
time step i, denoted by µk,i(θ). The belief characterizes
the agents’ confidence that θ is the underlying true state
at time i and is a probability distribution over all possible
states Θ, i.e.,

∑M−1
m=0 µk,i(θm) = 1, for all i = 0, 1, . . .

and k = 1, . . . , N . To avoid triviality, we assume that each
agent’s initial belief, µk,0(θ), is strictly positive for all θ ∈ Θ.
Correct learning is said to occur at time i for agent k if the
belief µk,i(θ) is maximized at the true state θ = θ⋆i . The
observations ξk,i are independent random variables over time i
conditioned on the true state θ⋆i , taking values in the space Ξk.
Given the underlying true state θ⋆i , the observations follow a
probability density function f(·|θ⋆i ), which implies that when
the underlying state of the environment remains unchanged,
the observations are independent and identically distributed
(i.i.d.) random variables over time. Each agent k is equipped
with a model that specifies the likelihood of the observations
ξ ∈ Ξk for each possible state θ ∈ Θ, denoted by Lk(ξ|θ).

The likelihood model Lk(ξ|θ), as a function of ξ, can be
either a probability density function or a probability mass
function, depending on whether ξ is continuous or discrete.
To ensure the agents can successfully learn the underlying true
state, we impose the following assumptions, which are also the
typical assumptions in traditional social learning methods [2],
[4], [5], [9], [13]:

Assumption 1 (Finiteness of KL Divergence). For each pair of
distinct states θ and θ′, the Kullback–Leibler (KL) divergence
[14] between Lk(ξ | θ) and Lk(ξ | θ′) for any agent k satisfies
DKL(Lk(ξ|θ)||Lk(ξ|θ′)) < ∞.

This assumption avoids trivial cases where a likelihood
function model for a certain state completely dominates.

Assumption 2 (Global Identifiability of the Underlying True
State). The agents are collectively able to identify the true
state uniquely:

{θ⋆i } = Θ⋆
i =

N⋂
k=1

Θ⋆
k,i, (1)
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where Θ⋆
k,i = argmin

θ∈Θ
DKL(f(·|θ⋆i )||Lk(·|θ)).

The agents interact in a network. We denote by A = [aℓk]
the weight matrix of the network, which is assumed to be
nonnegative and left-stochastic, i.e., 0 ≤ aℓk ≤ 1,

∑N
ℓ=1 aℓk =

1, aℓk = 0 for ℓ /∈ Nk, where Nk denotes the neighborhood
of agent k, with k itself being included.

Assumption 3 (Strong connectivity and aperiodicity). The
network of agents is strongly connected, and at least one node
k in the network has a self-loop, i.e., akk > 0.

Under Assumption 3, the weight matrix A is a primitive
matrix. According to the Perron-Frobenius theorem [15], there
exists a Perron vector π satisfying:

Aπ = π,

N∑
k=1

πk = 1, πk > 0 for all k = 1, . . . , N. (2)

A. Diffusion α-HMM

We model the true state θ⋆i as a random variable, following
a Markov chain. If the transition probabilities are denoted by
P = [pnm]M×M , where pnm = P

[
θ⋆i = θm | θ⋆i−1 = θn

]
,

then the optimal private belief update, based on the hidden
Markov model (HMM), is given by:

ψk,i(θm) =

∑M−1
n=0 pnmµk,i−1(θn)Lk(ξk,i|θm)∑M−1

ℓ=0

∑M−1
n=0 pnℓµk,i−1(θn)Lk(ξk,i|θℓ)

. (3)

This type of private belief update rule in social learning has
been studied in [11], [12]. Observe that the optimal private
belief update under a hidden Markov model involves the
entries of the full state transition matrix P , which is frequently
unknown and challenging to estimate in practice. In this work,
we will instead study a simplified HMM-based update, which
is derived under the assumption of equal exit probabilities for
state transitions. Specifically, the true state transitions with a
probability h, and when a transition occurs, the next state is
chosen uniformly at random. Under these assumptions, the
transition probability matrix simplifies to pmn = h/(M − 1)
if m = n, and pmm = 1− h.

A similar transition model was used in [10] to quantify
the dynamics of Adaptive Social Learning in time-varying
environments. Motivated by the update in (3), we adopt the
following belief update rule:

ψk,i(θm) =
((1− αM)µk,i−1(θm) + α)Lk(ξk,i|θm)∑M−1
n=0 ((1− αM)µk,i−1(θn) + α)Lk(ξk,i|θn)

,

(4)
where α = h

M−1 represents the exit probability. This private
belief update rule, referred to as the α-HMM, simplifies the
inference problem to a single tunable hyperparameter α. Of
course, for a general state transition matrix P , the simplified
update rule (4) will be suboptimal compared to the optimal
HMM filter (3). The advantage, on the other hand, is that
this simplification enhances the theoretical tractability, and
(4) relies only on a single parameter α, which quantifies
the volatility of the underlying true state. Indeed, examining

(4), we observe that α essentially controls the amount of
weight placed on prior beliefs compared to the most recent
observation. Note that when α = 0, the above iteration
degenerates into the classical Bayes’ update:

ψk,i(θm) =
µk,i−1(θm)Lk(ξk,i|θm)∑M−1
n=0 µk,i−1(θn)Lk(ξk,i|θn)

. (5)

On the other hand, when α = 1/M , Eq. (4) reduces to:

ψk,i(θm) =
Lk(ξk,i|θm)∑M−1

n=0 Lk(ξk,i|θn)
. (6)

In this case, each agent will negate prior beliefs and rely solely
on the current private observation for learning. In this paper,
since we focus on filtering in dynamic environments, we only
consider the case where 0 < h < 1 and consequently, α > 0.

At time i, after the inference step (4), each agent k aggre-
gates private beliefs from its neighboring nodes to form its
current belief µk,i using a geometrically weighted average:

µk,i(θm) =
exp

(∑
ℓ∈Nk

aℓk logψℓ,i(θm)
)∑M−1

n=0 exp
(∑

ℓ∈Nk
aℓk logψℓ,i(θn)

) . (7)

Combining (4) and (7) together, we finally obtain the
Diffusion α-HMM strategy for social learning in dynamical
environment. Note that the strategy corresponds to a simplified
form of the Diffusion HMM strategy from [11], [12]. In
contrast to these works, we will not assume the Markov chain
to be consistent with the dynamics driving θ⋆i , and instead
treat α as a tunable parameter akin to a step-size.

B. Dynamics of Log-belief Ratio in Steady State

For the purposes of analysis, we assume the environment
remains in a single state over an extended period, resulting
in fixed observation statistics. Without loss of generality, we
assume that the underlying true state is θ0 ∈ Θ, i.e., θ⋆i = θ0
for all i ≥ 1. We aim to analyze the dynamics of the log-
likelihood ratio of the belief on wrong and true states for any
agent k, i.e.:

xk,i(θm) ≜ log
µk,i(θm)

µk,i(θ0)
, m = 1, . . . ,M − 1. (8)

It can be verified that the log-likelihood ratio xk,i(θm) in
Diffusion α-HMM evolves as:

xk,i(θm) =
∑
ℓ∈Nk

aℓk

(
Fm(xℓ,i−1) + log

Lℓ(ξℓ,i|θm)

Lℓ(ξℓ,i|θ0)

)
,

(9)
where

Fm(x1, . . . , xM−1) ≜

log
(1− αM) exp(xm) + α+ α

∑M−1
n=1 exp(xn)

1− αM + α+ α
∑M−1

n=1 exp(xn)
,

(10)

xk,i = [xk,i(θ1), . . . ,xk,i(θM−1)]
⊤
. (11)

The following remark shows the connection between Dif-
fusion α-HMM and the Adaptive Social Learning strategy
from [9].
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Remark 1. The nonlinear function (10) has the following
properties:

Fm(0, . . . , 0) = 0, (12)

∂Fm

∂xm

∣∣∣
(0,...,0)

= 1− αM, (13)

∂Fm

∂xn

∣∣∣
(0,...,0)

= 0, ∀n ̸= m. (14)

By applying a multivariate Taylor expansion to Fm(x) around
x = 0M−1 up to the first-order term, for all m = 1, . . . ,M−1
we have Fm(x1, . . . , xM−1) = (1−αM)xm + o(∥x∥). Then,
the linear approximation of the system (9) is given by:

xk,i(θm) =(1− αM)
∑
ℓ∈Nk

aℓkxℓ,i−1(θm)

+
∑
ℓ∈Nk

aℓk log
Lℓ(ξℓ,i|θm)

Lℓ(ξℓ,i|θ0)
.

(15)

The above equation resembles the evolution of the log-belief
ratio in the Adaptive Social Learning (ASL) strategy in [9],
which has the following form:

xk,i(θm) =(1− δ)
∑
ℓ∈Nk

aℓkxℓ,i−1(θm)

+ δ
∑
ℓ∈Nk

aℓk log
Lℓ(ξℓ,i|θm)

Lℓ(ξℓ,i|θ0)
,

(16)

where δ is the step-size parameter. Equations (15) and (16)
both apply a discount to the information from the previous
time step in the private belief update step. It is worth noting
that another variant of ASL [13], [16] exhibits the same log-
belief ratio dynamics as in (15), with δ = αM . Further
comparison of the performance among the Diffusion α-HMM,
linearized Diffusion α-HMM, and ASL will be illustrated in
numerical experiments.

It can be seen that the recursion (9) is both nonlinear and
stochastic. To facilitate analysis, we introduce the following
deterministic dynamical reference system, where stochastic
quantities are replaced by their expected values:

x̂k,i(θm) =
∑
ℓ∈Nk

aℓk (Fm(x̂ℓ,i−1)− dℓ(θm)) , (17)

where

dk(θm) ≜DKL(f(·|θ0)||Lk(·|θm))−DKL(f(·|θ0)||Lk(·|θ0))

=− E
[
log

Lk(ξk,i|θm)

Lk(ξk,i|θ0)

]
. (18)

Assumption 2 ensures that dk(θm) ≥ 0 and for all m =
1, . . . ,M − 1 there exists at least one k = 1, . . . , N such
that dk(θm) > 0. The quantity dk(θm) quantifies agent k’s
ability to distinguish between an incorrect state θm and the
true state θ0. We refer to this measure as the identifiability of
agent k with respect to θm.

In this paper, we first analyze the fixed point of the dynam-
ical reference system (17) under steady-state conditions. We

then establish the convergence of the reference system to its
fixed point. Finally, under additional assumptions on noise and
identifiability, we derive an estimate for the error probability.

II. CONVERGENCE ANALYSIS

For a discrete dynamical system xi = T (xi−1), a fixed
point corresponds to an equilibrium state of the system, such
that T (x∞) = x∞. We begin by characterizing x∞

k for the
reference system (17).

Lemma 1. The fixed points of the dynamical reference system
(17) exist, and satisfy x̂∞

k (θm) < −
∑

ℓ∈Nk
aℓkdℓ(θm).

Proof. Proof omitted due to space limitations.

The following theorem shows the convergence of (17) to
its unique fixed point provided that the underlying state is
constant.

Theorem 1. When 0 < α < 1/M and the underlying
true state θ⋆i remains constant, x̂k,i(θm) defined in (17) will
converge to a unique fixed point, i.e.,

lim
i→∞

x̂k,i(θm) = x̂∞
k (θm), ∀1 ≤ k ≤ N, 1 ≤ m ≤ M − 1.

(19)

Proof. Proof omitted due to space limitations.

Theorem 1 establishes that the dynamical reference system
converges to a unique fixed point, whose value is upper-
bounded by a weighted average of the identifiability of neigh-
boring agents, referred to as the neighborhood identifiability.
Thus, neighborhood identifiability guarantees the learning ca-
pability of agent k under steady-state conditions.

In the following, for the purpose of further theoretical
analysis, we make the following assumption, which requires
the log-likelihood to be bounded almost surely.

Assumption 4 (Bounded Log-Likelihood Ratio). There exists
a positive constant C such that:

max
k=1,...,N

max
m=1,...,M−1

sup
ξ∈Ξk

∣∣∣∣log Lk(ξ|θm)

Lk(ξ|θ0)
+ dk(θm)

∣∣∣∣ ≤ C, a.s..

(20)

To evaluate the learning performance of Diffusion α-HMM,
we introduce an important metric: the instantaneous error
probability, defined as:

pei ≜

P
[
∃ k = 1, . . . , N and θm ̸= θ0, s.t. µk,i(θm) ≥ µk,i(θ0)

]
.

(21)
From this definition, it is clear that the instantaneous error
probability quantifies the probability that any agent fails to
correctly identify the underlying true state at a given time i
during the online social learning process.

Due to the nonlinearity and stochasticity of the original
system, directly computing the error probability is challenging.
Here, we provide an analytical result under the assumption of
sufficient neighborhood identifiability.
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Theorem 2. When α < 1/M and the underlying true state θ⋆i
remains constant, if for all k = 1, . . . , N and m = 1, . . . ,M−
1, ∑

ℓ∈Nk

aℓkdℓ(θm) > C, (22)

then the instantaneous error probability for the diffusion
α−HMM algorithm satisfies:

lim sup
i→∞

pei ≤
C

−αx∞ , (23)

where x∞ = max
k=1,...,N

max
m=1,...,M−1

x̂∞
k (θm) < 0, C is as

defined in (20).

Proof. Proof omitted due to space limitations.

Theorem 2 establishes that, under certain conditions on
neighborhood identifiability, the upper bound of the instan-
taneous error probability converges to a fixed value. This
result implies that within the Diffusion α-HMM framework,
the probability of erroneous learning cannot be guaranteed to
asymptotically approach zero, even in steady-state conditions,
which contrasts with the behavior predicted by Bayes’ formula
[5]. However, by sacrificing some learning accuracy, the Dif-
fusion α-HMM framework significantly enhances adaptability,
as further demonstrated in the numerical experiments.

The steady-state error probability can be mitigated in one
of two ways: (1) Shifting the fixed point x̂∞

k (θm) of the
deterministic system further away from zero. As shown in
Lemma 1, improving agents’ identifiability dk(θm) facilitates
this shift. (2) Reducing observation noise, thereby increasing
the informativeness of the received signals.

III. NUMERICAL EXPERIMENTS

In the numerical experiments, we consider a network of
N = 5 agents attempting to infer the evolving state from a
set of M = 3 possible states. Different network topologies are
examined, including a fully connected network and a strongly
connected network. The weight matrix is randomly initialized
while ensuring it satisfies the conditions of a primitive matrix.
The true distribution of the observation ξk,i, f(·|θ⋆i ), follows
a normal distribution N (θ⋆i , σ

2), where θ⋆i ∈ Θ = {0, 1, 2}.
Each agent k employs a likelihood model Lk(·|θ), which
is also modeled as a normal probability density function
with a standard deviation of σ and a mean specified in
Table I. As observed from Table I, some agents are unable
to independently distinguish among the three states. However,
for any pair of states, there exists at least one agent capable
of differentiation, which satisfies Assumption 2.

We compare the performance of three algorithms: the Dif-
fusion α-HMM introduced in this paper (Eq. (4) and Eq. (7)),
the linearized Diffusion α-HMM (15), and adaptive social
learning [8]. Specifically, consider the private belief update
given by:

ψk,i(θm) =
µ1−δ1

k,i−1(θm)Lδ2
k (ξk,i|θm)∑M−1

n=0 µ
1−δ1
k,i−1(θn)L

δ2
k (ξk,i|θn)

. (24)

When δ1 = δ2 = δ, this update rule corresponds to the
adaptive social learning (ASL) strategy in [9]. When δ1 = αM
and δ2 = 0, it represents the linearized Diffusion α-HMM.

In the first scenario, the underlying true state evolves ac-
cording to a Markov chain with equal exit probabilities, which
is the same mechanism on which our proposed algorithm is
based. The true exit probability is set to α0 = 0.1, and we
tune the parameter α with different fixed values of σ in the
Diffusion α-HMM, linearized Diffusion α-HMM, and ASL
(where δ is set as αM ). Due to the ergodicity of the underlying
stochastic process governing the state evolution, we compute
the probability of successfully tracking the true state over
50,000 time steps. The comparison results are presented in
Fig. 1.

A horizontal comparison in Fig. 1 reveals that although the
learning accuracy is generally higher in the fully connected
network, in the strongly connected network, even agent 5,
which lacks distinguishing ability, can still correctly infer the
true state most of the time due to information aggregation
from other agents. A vertical comparison shows that as the
standard deviation of noise σ increases, the learning accuracy
decreases. When comparing the three algorithms, we observe
that under low noise conditions, the highest learning accuracy
follows the order: Diffusion α-HMM > Linearized Diffusion
α-HMM > Adaptive Social Learning. Moreover, the first
two methods exhibit superior performance over a broader
range of parameter values compared to ASL. Additionally,
Diffusion α-HMM consistently outperforms the linearized
model, demonstrating the benefits of nonlinearity in improving
learning accuracy. However, when the noise level is high, ASL
achieves slightly higher maximum learning accuracy than both
Diffusion α-HMM and Linearized Diffusion α-HMM in the
fully connected network, highlighting the role of step-size
scaling in mitigating noise effects.

In the second scenario, we assume that every T0 itera-
tions, the underlying true state is randomly selected from Θ.
Notably, under this assumption, the state evolution does not
follow a Markov chain. In the strongly connected network,
we evaluate the performance of the three algorithms under
different transition intervals T0 and noise standard deviations
σ. From Fig. 2, we observe that despite the change in the
state evolution mechanism, the relative performance of the
three algorithms remains similar to that in Scenario 1. This
further highlights the role of the nonlinear inference step in
dynamic environments. Additionally, when the environment

TABLE I
LIKELIHOOD MODEL CONFIGURATION FOR THE AGENTS.

Agent k
Likelihood model Lk(·|θ)
θ0 = 0 θ1 = 1 θ2 = 2

1 0 1 2
2 0 1 1
3 0 0 2
4 0 1 0
5 0 0 0
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Fig. 1. Comparison of the learning accuracy of agent 5, which has no
distinguishing capability, under different network topologies and algorithms
in Scenario 1. The accuracy is evaluated as a function of α for different fixed
values of σ. LD α-HMM refers to the linearized Diffusion α-HMM.
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Fig. 2. Comparison of the learning accuracy of agent 5, which has no
distinguishing capability, under different transition intervals T0 and algorithms
in Scenario 2. The accuracy is evaluated as a function of α for different fixed
values of σ. LD α-HMM refers to the linearized Diffusion α-HMM.

is less volatile (e.g., Fig. 2(b)), the performance of ASL for
small δ deteriorates. This indicates that a small δ applied to
observational data may hinder the learning capability of the
multi-agent system.

Fig. 3 illustrates the evolution of agent 5’s belief on the true
state under Scenario 2, comparing the three algorithms with
their respective optimal parameter values, α⋆, in two different
settings. From the figure, it can be observed that when the
observation noise σ is small and the environment is more
dynamic (i.e., smaller T0), the Diffusion α-HMM exhibits
a faster adaptation rate. Conversely, when the observation
noise is large and the environment is more stable, ASL can
mitigate the impact of observation noise by selecting a smaller
α (corresponding to a smaller step-size δ), resulting in a
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Fig. 3. Comparison of agent 5’s belief evolution on the true state across the
three algorithms under two different settings.

smoother belief evolution. However, in such cases, the beliefs
across different states tend to be closer to each other.
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