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Abstract— This work addresses the linear consensus problem
in multi-agent systems under adversarial attacks. We examine
scenarios where legitimate agents utilize stochastic inter-agent
trust observations to assess the likelihood of neighboring agents
acting maliciously in order to mitigate their impact. Malicious
agents, in turn, aim to strategically choose what values to
send to maximize the disagreement among legitimate agents
in a finite horizon. In contrast to prior studies that assume
static adversarial behavior and focus on asymptotic consensus,
this work investigates the impact of strategic attacks within
a finite number of iterations. Specifically, we characterize the
maximum disagreement that malicious agents can induce in
finite time and the computational complexity of computing the
best attack strategy. We compare the effectiveness of different
attack strategies through numerical experiments.

I. INTRODUCTION

In this work, we study the finite-time performance of linear
consensus in multi-agent systems under adversarial attacks.
We consider agents performing linear average consensus over
undirected communication graphs during a fixed and known
time horizon H . In our model, an adversarial attack occurs
at some unknown time τ < H , compromising an unknown
subset of agents. These compromised agents, which we call
“malicious,” behave non-cooperatively from time τ until the
end of the horizon, with the goal of maximizing disagreement
between the agents in the rest of the network. Assuming
the availability of stochastic observations that quantify the
likelihood of neighboring agents acting maliciously, we for-
mally define a finite-time consensus problem in the presence
of such strategic malicious agents. We also highlight the
analytical challenges posed by this problem and present
initial steps toward addressing them.

While finite-time consensus [1]–[3] and consensus with
malicious agents [4], [5] are individually well-studied, lit-
tle is known about their combination. Classical methods
relying on filtering extreme transmitted values are capable
of mitigating malicious influence in finite time, but they
also impose restrictive constraints on the tolerable number
of malicious agents [6], [7]. More recent approaches are
able to slacken these restrictions by leveraging sensor mea-
surements available to embodied distributed systems. This
enables agents to estimate agent trustworthiness [8], [9]
rather than relying on information sent along the graph.
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However, work in this setting thus far has focused exclusively
on asymptotic results rather than finite-time scenarios and
assumes malicious agents always behave maliciously rather
than strategically timing their attacks [10]–[12].

Like previous work, our approach augments linear average
consensus with a concurrent detection algorithm utilizing
trust observations. However, unlike previous works [11]–
[13], our finite-time framework allows malicious agents to
behave strategically—remaining hidden until launching their
attack at time τ , making almost sure detection impossible.
To address this challenge, in Section III-A, we introduce a
sliding observation window that limits the set of considered
trust observations, and characterize detection probabilities
based on the window’s size.

In Section III-B, building upon this detection capability,
we analyze how malicious agents influence disagreement and
provide bounds on their impact. We also characterize ana-
lytical challenges unique to the finite-time setting. We show
that stepwise disagreement reduction cannot be guaranteed,
even in the absence of malicious agents. We also prove that
sufficiently strong malicious agents capable of predicting
when they will get detected can calculate an optimal attack
strategy in polynomial time.

Finally, in Section IV we provide simulations modeling
malicious attacks, finding that the optimal attack is well-
approximated by a simple heuristic for two graph topologies.

II. PROBLEM SETUP

We consider the case where a set of agents V communicate
over a static undirected communication graph G = (V, E).
We denote the neighbors of agent i by Ni. Let the set of
malicious agents be M with NM ≜ |M|. The remaining
agents, which always act cooperatively, are referred to as
‘legitimate’ agents and are denoted by L with NL ≜ |L|.
These sets remain fixed over time, and each agent is either
malicious or legitimate; i.e., L ∩M = ∅ and L ∪M = V .
Legitimate agents do not know the attack time τ .

Each agent i ∈ V has an initial value xi(0) ∈ R. Without
loss of generality, we write the well-known average consen-
sus dynamics x(t+1) = W (t)x(t) with the assumption that
the first NL indices correspond to the legitimate agents and
the remaining indices correspond to the malicious agents.
Let xL(t) and xM(t) represent the values of the legitimate
and malicious agents at time t, respectively. Then, for all
t ∈ {0, 1, . . . , τ − 1}, the consensus process of all agents
can be decomposed into block matrix form as:[

xL(t+ 1)
xM(t+ 1)

]
=

[
WLL(t) WLM(t)
WML(t) WMM(t)

] [
xL(t)
xM(t)

]
, (1)
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where Wij(t) is the weight assigned by agent i to agent
j at time t, satisfying Wij(t) ≥ 0, Wii(t) > 0, Wii(t) +∑

j∈Ni
Wij(t) = 1 for all t ∈ {0, 1, . . . ,H − 1}, and Ni

denotes the neighbors of agent i. As we elaborate later on, the
matrices W (t) are possibly time-varying and random. Once
the attack begins, malicious agents may send arbitrary values.
We assume that at all time steps, agent values remain within
a bounded interval, i.e., xi(t) ∈ [−η, η] for all i ∈ V and all
t ∈ {0, 1, . . . ,H}. Therefore, malicious agents send values
xM(t) ∈ [−η, η]NM for t ≥ τ . 1 We consider a broadcast
communication model where agents send the same value to
all their neighbors. The malicious agents’ goal is to maximize
the expected disagreement among legitimate agents at the
horizon, given the attack time τ . The ‘disagreement’2 at time
t is:

δ(t) = xL(t)
⊺LxL(t), (2)

where L ≜ I− 1
NL

11⊺ and 1 denotes a column vector of ones
of the appropriate dimension. Then, the goal of malicious
agents is defined as

max
xM(t)∈[−η,η]NM , ∀t∈{τ,...,H−1}

E[δ(H)], (3)

where the randomness in expectation is over the weight
matrices W (t). Next, we define how malicious agents can
have influence on the disagreement δ(H).

Let W (s; t) denote the backward product of matrices—
that is, for t ≥ s, W (s; t) ≜ W (t)W (t − 1) · · ·W (s), and
W (s; t) = I for t < s. Then the consensus process of
legitimate agents after the start of the attack can be written
as: for all t = τ, . . . ,H − 1,

xL(t+ 1) = WLL(τ ; t)xL(τ)

+
t−1∑
k=τ

WLL(k + 1; t− 1)WLM(k)xM(k).

From the perspective of the malicious agents who wish to
maximize the expected disagreement defined in (3), this
is a constrained control problem. To see this, define the
controllability matrix B(τ, t) and control input u(τ, t) as

B(τ, t) ≜ [WLL(τ + 1; t− 1)WLM(τ) |
WLL(τ + 2; t− 1)WLM(τ + 1) | · · · | WLM(t− 1)] ,

(4)

u(τ, t) ≜
[
xM(τ)T | xM(τ + 1)T | · · · | xM(t)T

]T
, (5)

where B(τ, t) ∈ RNL×NM(t−τ) and u(τ, t) ∈ RNM(t−τ) is
the malicious agent’s input. As in [5], malicious agents can
control the system through u(τ, t). Then our update appears
to be a constrained linear controller:

xL(t+ 1) = WLL(τ ; t)xL(τ) +B(τ, t)u(τ, t). (6)

1It suffices to assume that the initial values of legitimate agents are in
the interval [−η, η] and all agents are aware of this. Since legitimate agents
always perform linear averaging, their values remain within this range.
Consequently, malicious agents cannot send values outside this range either;
otherwise, they would be immediately detected.

2Note that disagreement we define corresponds to ‘polarization’ in
opinion dynamics literature [14].

Next, we discuss how agents choose their weights Wij(t).
In this work, we are interested in settings where agents may
receive stochastic observations of trust from other agents that
send them information. Following previous works [8], [11],
[15], [16] which formalize this notion, we give the following
definition and assumptions on stochastic trust observations:
Definition 1 (Stochastic Observation of Trust αij) If agent
j ∈ V sends information to a legitimate agent i ∈ L at
time t (meaning j ∈ Ni), then agent i receives a stochastic
observation of trust αij(t) ∈ [0, 1]. Larger αij(t) values
indicate higher levels of trust.
Assumption 1 Assume that the following statements hold:
1) For all agents i ∈ V and their legitimate neighbors
l ∈ Ni ∩ L, at any time t ∈ {0, 1, . . . ,H−1}, trust observa-
tions αil(t) have a known expected value EL ≜ E[αil(t)].
2) Prior to the attack time τ , malicious agents always behave
cooperatively, i.e., they follow the update rule in Equa-
tion (1). Consequently, for agent i ∈ V with malicious
neighbor m ∈ Ni, for any t < τ , the trust observations
αim(t) satisfy E[αim(t)|t < τ ] = EL, like legitimate agents.
After the attack time, the expected trust observation changes
to E[αim(t)|t ≥ τ ] = EM where EM satisfies EL > EM.
3) Given a fixed attack time τ , trust observations αij(t)
are independent over time for all agents i ∈ V and their
neighbors j ∈ Ni.

Assumption 1.3 implies that the trust observations are in-
dependent of the values xi(t) exchanged between the agents,
which is consistent with previous work that characterizes
and utilizes stochastic trust observations [8], [11], [16]. Now,
we explain how legitimate agents use trust observations to
decide which neighbors to trust. We will consider a simple
detection rule where legitimate agents estimate the expected
trust value of a neighbor based on a window of no-many
past observations. For ease of exposition, we will assume
that agents will start with no-many observations at time 0.
Then agent i estimates neighbor j’s expected trust value as:

α̂ij(t) =
1

no

t−1∑
k=t−no

αij(t). (7)

Next, we define the trusted neighborhood of a legitimate
agent i at time t:

N̂i(t) ≜ {j ∈ Ni | EL − α̂ij(t) ≤ ξ}, (8)

where ξ > 0 is a fixed threshold parameter that is chosen
by legitimate agents. Our later results derive ranges for ξ
to allow for detection of malicious agents. Agents in the
trusted neighborhood are assigned positive weights, while all
others receive zero weights. Thus, Wij(t) > 0 if and only
if j ∈ N̂i(t). Note that, before the attack time τ , malicious
agents behave indistinguishably from legitimate agents and
therefore adhere to the same trusted neighborhood detection
rule. However, after τ , every malicious agent m ∈ M can
broadcast its values to all of its neighbors in Nm.

III. ANALYSIS

In this section, we analyze the performance of the detection
algorithm and characterize the impact of malicious agents on
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disagreement, δ(H), at time H . Specifically, we first show
upper bounds on the misclassification probabilities resulting
from the detection rule in (8). Then, we characterize bounds
on the disagreement as well as the computational complexity
of finding the optimal control input u(τ, t) that maximizes
the disagreement.
A. Detection Performance
We are interested in the probabilities of misclassifying a
legitimate agent as malicious and vice versa after an attack
begins. This is in contrast to previous work [11], [15],
[16] which assumes malicious agents are adversarial from
initial time t = 0. Instead, we assume malicious agents
act legitimately until time τ , after which they behave mali-
ciously. At τ , past trust observations become misleading, as
malicious agents would have previously appeared legitimate.
Thus, unlike [11], [15], [16], we restrict our analysis to a
fixed number of past observations, denoted as no in (7).
We observe that increasing no reduces the probability of
misclassifying malicious agents (Proposition 1), but also
leads to a higher initial misclassification probability at τ
(Proposition 2).
Proposition 1 Let i be a legitimate agent and l ∈ Ni∩L be
its legitimate neighbor. Then, for any ξ > 0, we have

P(l /∈ N̂i(t)) ≤ exp(−2ξ2no).

Moreover, for any time t < τ , for a malicious neighbor
m ∈ Ni ∩M, we have P(m /∈ N̂i(t)) = P(l /∈ N̂i(t)).
Proof. We have P(l /∈ N̂i(t)) = P(EL − α̂ij(t) > ξ) by the
detection rule (8). As αij(t) ∈ [0, 1], and are independent
over time for a fixed τ , the results follow from the Chernoff-
Hoeffding bound [17, Theorem 1.1, p. 6].
Proposition 2 Let i be a legitimate agent and m ∈ Ni ∩
M be its malicious neighbor. Define cl as the number
of observations before the attack time τ included in the
observation window: cl ≜ max{τ − t + no, 0}. Let 0 <
ξ < no−cl

no
(EL − EM) Then, we have

P(m ∈N̂i(t) | t ≥ τ)

≤ exp

(
− 2

no
((no − cl)(EL − EM)− noξ)

2

)
.

Proof. Using the detection rule in Equation (8), we get
P(m ∈ N̂i(t) | t ≥ τ) = P(α̂im(t) ≥ EL − ξ | t ≥ τ). We
have E[α̂im(t)] = clEL+(no−cl)EM

no
. Using this expectation

and multiplying everything by no we get

P(α̂im(t) ≥ EL−ξ | t ≥ τ) = P(noα̂im(t) ≥ noE[α̂im(t)]

+ (no − cl)(EL − EM)− noξ | t ≥ τ).

Since trust observations are independent over time given
τ , the result follows by the Chernoff-Hoeffding bound [17,
Theorem 1.1, p. 6] for any 0 < ξ < no−cl

no
(EL − EM).

These results indicate that misclassification probabilities
are low for a sufficiently large observation window no. The
neighborhood detection rule, in combination with stochastic
trust observations, results in a sequence of time-varying
stochastic weight matrices {W (t)}Ht=0. We highlight several

key observations regarding the properties of these matrices.
First, since trust values received from different neighbors
j, l ∈ Ni are not necessarily independent, the inclusion
of edges may be correlated. This contrasts with commonly
studied random graph models, such as Erdős–Rényi graphs,
where edges are typically assumed to be independent. Sec-
ond, the weight matrices are temporally correlated, since
agents determine their neighborhoods based on no past
trust observations. This dependence introduces a structured
evolution in the weight matrices over time. Lastly, the matrix
sequence {W (t), t = 0, . . . ,H − 1} is independent of the
values u(t; τ) sent by the malicious agents to disturb the
process, as the values sent by the agents are decoupled from
the trust values given the attack time τ .

B. Bounding Disagreement

In this section, we turn our attention to establishing possible
bounds on disagreement for a given sequence of matrices
generated by the trusted-neighborhood detection process.
Throughout this section, we will assume that the stochastic
weight matrix sequence {W (t)}Ht=0 is given. Our goal is to
analyze the ways malicious agents can cause disagreement
and characterize their impact. First, we study the system’s
behavior in the absence of malicious agents. It is well-known
that a consensus protocol on a connected graph with row-
stochastic weights leads to agreement. However, in the finite-
time setting, short-term disagreement reduction depends on
how agents assign their weights WLL(t). Our next result
shows that common averaging rules, where agents consider
only their in-neighbors to design row-stochastic weight ma-
trices, do not always guarantee a step-wise decrease in
disagreement. However, if the weight matrix is column-
stochastic, then disagreement is non-increasing.
Proposition 3 At time step t, assume that no malicious agent
is included in any legitimate neighborhood, i.e., m /∈ N̂i(t)
for all i ∈ L and m ∈ Ni ∩ M. Then there exists a
row stochastic matrix WLL(t) corresponding to a strongly
connected graph such that δ(t + 1) > δ(t) for some xL(t).
However, if WLL(t) is doubly stochastic, then we have
δ(t+ 1) ≤ δ(t).
Proof. We show the first claim by constructing an exam-
ple. Consider a line graph with 4 nodes, row stochastic

weight matrix WLL(t) =

(
0.8 0.2 0 0
0.8 0.1 0.1 0
0 0.1 0.1 0.8
0 0 0.2 0.8

)
, and the vector

xL(t)
⊺ =

(
1 0 0 −1

)
. In this example the disagree-

ment increases after one consensus step.
For the second, by definition of disagreement given in (2),

we have δ(t) = xL(t)
⊺LxL(t). Since L = I − 1

NL
11⊺,

δ(t) = ∥xL(t)∥2 − (1⊺xL(t))
2, where ∥·∥ is the 2-

norm. Similarly, we have δ(t + 1) = ∥WLL(t)xL(t)∥2 −
(1⊺WLL(t)xL(t))

2. When WLL(t) is doubly stochastic, we
have 1⊺WLL(t)xL(t) = 1⊺xL(t). Therefore, it is sufficient
to show that ∥WLL(t)xL(t)∥ ≤ ∥xL(t)∥. This is true as the
largest singular value of a doubly stochastic matrix is 1.

We next investigate the impact of malicious agents on
disagreement. For this, we define δ∗ to be the maximum
disagreement that the malicious agents can achieve at time
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H , i.e., δ∗ = maxu(τ,t)∈[−η,η]NM(H−τ) δ(H). This value
is the optimal value of a quadratic function δ(H) over the
box constraint u(τ, t) ∈ [−η, η]NM(H−τ), which is an NP-
hard problem in general [18]. However, in the next theorem,
we show that due to the rank deficiency of B(τ, t), its
complexity is polynomial for fixed NL.
Theorem 1 We denote the total number of times that
a malicious agent is connected to at least one le-
gitimate neighbor at any time after τ as S ≜∑H−1

t=τ

∑
m∈M 1{

∑
l∈L[WLM(t)]lm>0}, where 1{·} denotes

the indicator function. Then, given the sequence of weight
matrices {W (t)}Hk=τ and initial values xL(τ), the problem

max
u(τ,t)∈[−η,η]NM(H−τ)

δ(H)

can be solved in O(SNL
(
SNL +N2

L

)
) time.

Proof. Denote the feasible set of xL(H) by Z . We have
xL(H) = WLL(τ ;H − 1)xL(τ) + B(H, τ)u(H, τ), where
B(H, τ) and u(H, τ) are the controllability matrix and
control input defined in (6). Malicious agents influence the
system through B(H, τ), which has S nonzero columns.
Thus, varying u(H, τ), we see Z is the affine image of a
hyper-cube in RS , called a zonotope [19]. Since zonotopes
are convex and δ(H) is a convex quadratic, we can compute
the optimum by enumerating the vertices of Z , achievable in
O(SNL) [18, Theorem 3.2], and maximizing disagreement
over this set. At each step we compute the corresponding
candidate u(H, τ), adding S columns of B(H, τ) and eval-
uating δ(H), requiring O(SNL +N2

L).
Note that S is always upper-bounded by NM(H−τ), and,

despite being polynomial in S, the complexity still grows
exponentially with NL. In our next result, we provide a
bound on the maximum achievable disagreement δ∗.
Theorem 2 Let σ be the largest singular value of the matri-
ces in the sequence {WLL(t)}Ht=τ . Define the maximum total
weight a legitimate agent assigns its malicious neighbors as
Υ = maxi∈L,t≥τ

∑
j [WLM(t)]ij . Then, we have 0 ≤ δ∗ ≤

η2NL. Moreover, if σ < 1, we also have

δ∗ ≤ η2NL min

{
1,

(
σH−τ+1 +Υ

1− σH−τ−1

1− σ

)2
}
.

Proof. Let Z denote the feasible space of legitimate agents’
final values xL(H) as in the proof of Theorem 1. By the def-
inition of δ∗, we have δ∗ = maxxL(H)∈Z xL(H)⊺LxL(H).
Since L is positive semi-definite, disagreement is always
non-negative and so 0 ≤ δ∗. For the upper bound, we
consider an l2 ball that encompasses the feasible space Z .
Our goal is to find a radius R such that ∥xL(H)∥ ≤ R and
compute max∥xL(H)∥≤R xL(H)⊺LxL(H). The maximum
value is achieved at λ(L)R2, where λ(L) is the largest
eigenvalue of L, which is equal to 1. We will find both
a general-case R, and one requiring additional assumptions.
First, since legitimate agents’ values are guaranteed to stay in
range [−η, η], we have xL(t) ∈ [−η, η]NL and so ∥xL(t)∥ ≤√
NLη. Therefore, we can choose R =

√
NLη. Second, from

the linear controller formulation of xL(t) given in (6), we
get ∥xL(H)∥ = ∥WLL(τ ;H)xL(τ) +B(H, τ)u(H, τ)∥ .

Assuming σ < 1 and using the triangle inequality and the
definitions of B(H, τ) and u(H, τ) in (4), we obtain

∥xL(H)∥ ≤ ∥WLL(τ ;H)xL(τ)∥

+
H−2∑
k=τ

∥WLL(k + 1;H − 2)WLM(k)xM(k)∥

≤ η
√
NLσ

H−τ+1 +
H−2∑
k=τ

σH−2−k ∥WLM(k)xM(k)∥

≤ η
√

NLσ
H−τ+1 + ηΥ

√
NL

1− σH−τ−1

1− σ
.

Therefore, we can set R = σH−τ +Υ 1−σH−τ−1

1−σ . Taking the
minimum over each value for R yields the result.

This bound is loose, as it only considers the maximum
norm of xL(H) instead of the reachable space. To see this,
assume that we have H ≫ τ and malicious agents stay
undetected after the attack time. If they always send η and
the legitimate agents are sufficiently connected, we have
xL(t) ≈ η1. In this case, the disagreement is almost 0, while
∥xL(t)∥ ≈ η

√
NL. In numerical studies, we examine the

emperical maximum reachable disagreement on two graphs.

IV. NUMERICAL STUDIES

To validate our theoretical results, we conduct numerical
experiments. Below we describe our setup in detail.

1) Evaluation: For all experiments, we use time horizon
H = 50, window size no = 10, and randomly initialize each
vector uniformly in [−η, η]. For each, we report the average
disagreement. Without loss of generality, we let η = 1. We
conduct 100 trials for each set of parameters, and likewise fix
100 random seeds—thus, the average disagreement for each
attack is over the same sequence of weights {W (t)}Ht=0.

2) Graph Topologies: We evaluate our model on two
topologies: line and Erdős–Rényi (ER) graphs. Due to com-
putational constraints, we consider graphs consisting of 6
legitimate agents, with NM ∈ {1, 2} malicious agents added
either at the ends of the line or as nodes in the ER graph
before edge generation. We add edges to the ER-graph with
probability p = 0.8, and constrain the graph to be connected.
We use the same line and ER graph across all trials.

3) Trust Observations: Following previous work [11],
[15], we model trust observations as uniform distributions
with distinguishable means. In particular, we define the le-
gitimate and malicious distributions DL ≜ Unif(0.375, 0.75)
and DM ≜ Unif(0.25, 0.625). We sample trust values
following the specification given by Assumption 1, and use
the detection rule from (8) with ξ = 0.08 to decide on edges.
Weight matrices {W (t)}Ht=0 are generated by normalizing
each row to be uniform over in-neighbors.

4) Malicious Strategies: We consider three attack
strategies: the random strategy has malicious agents
take random actions in {−η, η} at each timestep. The
switching strategy uses the sequence {W (t)}Ht=0 to find
the disagreement-maximizing action constrained to switch-
ing exactly once between sending η or −η—for example,
[η, η, η,−η,−η,−η,−η]. Finally, the oracle implements
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strategies on the Erdős–Rényi graph with 6 malicious agents, versus
attack time.

Fig. 1. (a) For all attacks and graphs, the best attack times ranged from τ = 44 to τ = 48, and the switching and oracle strategies found identical
optimal attack times and corresponding vectors. (b) The switching strategy heuristic performs similarly to the oracle across all attack times τ .

the poly-time algorithm in [18] to calculate the optimal
malicious input for each {W (t)}Ht=0. We find the best attack
for every time τ ∈ {0, ...,H − 1}.

We find that the empirical average disagreement displayed
in Figure 1(a) is far below the Theorem 2 bounds in all
cases, with a maximum of 0.7864 incurred by the oracle
and switching attacks with two malicious agents. Interest-
ingly, we find the optimal oracle attack coincides exactly
with the best attack found by switching. In general,
the strategies only disagree for small τ , at which points
the oracle can attain marginal improvements by sending
extreme values whenever it is in a trusted neighborhood,
shown in Figure 1(b). We note that the switching and
oracle strategies are very strong adversaries, as they
require knowledge of future trust values to compute their
attacks. Thus, it is unlikely that stochastic matrices could be
known ex ante in this way.

V. CONCLUSION

This paper studies finite-time consensus under adversarial
attacks, where malicious agents aim to maximize disagree-
ment and legitimate agents detect adversaries via stochastic
trust observations. We propose a sliding-window trust-based
detection algorithm and analyze its performance. We char-
acterize the disagreement achievable by malicious agents,
provide an algorithm to compute an optimal attack strategy
in polynomial-time, and show numerically that a heuristic
closely matches the optimal attack in concrete settings.
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