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Abstract—Decentralized Federated Learning (DFL) is a server-less
federated learning framework that facilitates collaborative model training
while ensuring data privacy, eliminating the need for orchestration
from a centralized entity. In many real-world applications, unreliable
communication networks result in uneven agent participation due to
stochastic environmental conditions. In this study, we model commu-
nication links between nodes as erasure channels, where transmitted
information may be received by neighboring nodes with a low probability.
To address this challenge, we propose two risk-aware extensions of
the traditional Combine-then-Adapt (CTA) technique, employing the
Conditional Value-at-Risk (CVaR) over the distribution of nodes. Our
experimental evaluations on MNIST and FashionMNIST datasets show
that the proposed approaches achieve higher performance as compared
with standard CTA, across various setups.

Index Terms—Decentralized Federated Learning, Conditional Value-
at-Risk, Risk-Aware Learning, Stochastic Optimization, Erasure Chan-
nels.

I. INTRODUCTION

Decentralized Federated Learning (DFL) is a server-less distributed
learning framework allowing multiple agents to collaboratively solve
a global optimization problem using only their private local informa-
tion [1]. Unlike classic federated learning frameworks, which rely on
a central parameter server to coordinate the communication among
the agents, by receiving their updates, aggregating parameters, and
broadcasting the aggregated model back to them [2], DFL substitutes
this centralized scheme with a peer-to-peer communication analog.
This shift from the centralized structure of FL to a fully distributed
architecture enhancing data privacy and reducing the risk of single
points of failure [3].

In vanilla DFL, agents are connected via some graph topology that
allows information exchange between neighboring agents [4]. The
diffusion-based strategies (adapt-then-combine(ATC) and combine-
then-adapt(CTA) protocols) allow the linked agents, through contin-
uous interactions with their neighbors, to achieve comparable level
of performance to that of a single centralized agent with access to
all available data in the network [4]. Despite its advantages, DFL
deals with uncertainty arising by intermittent communication between
nodes, which may be caused by network outages, user inactivity or
under random nodes communication [5]-[7]. The presence of non-
independent and identically distributed (non-IID) data across nodes
[8] further exacerbates the associated optimization problem.

Prior research has extensively studied the intermittent nature of
node communication in DFL, proposing various methods to mitigate
the related challenges. One line of this research focuses on the
impact of imperfect communication channels on DFL, particularly
in determining the optimal number of local aggregations per train-
ing round based on network topology and channel imperfections
[9]. Additionally, the importance of robust communication in DFL
frameworks to maintain model performance under volatile network
conditions has been well studied. For instance, the so-called Soft-
DSGD approach addresses unreliability caused by packet losses and
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Fig. 1: Decentralized Federated Learning (DFL) under erasure com-
munication channels. 0 indicates channel failure, while 1 indicates
channel functionality.
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transmission errors, by incorporating partially received messages into
model updates and optimizing mixing weights based on the link
reliability matrix [10].

Recent studies have also explored advancements in server-less FL.
under dynamic conditions. For example, an asynchronous network of
agents where each agent independently decides on participation and
neighbor selection is examined in [!]. Additionally, server-less FL
schemes for multi-cell environments, under frequent test-time distri-
bution shifts have been studied in [/ 1], while test-time performance
in server-less Vertical FL has been improved robustness through
replication, gossiping, and selective feature omission [12]. Moreover,
the impact of communication errors and constraints has been studied
extensively for both centralized and decentralized FL. Specifically,
the centralized FL scheme is studied under communication errors by
modeling the communication channels as erasure channels [ 3], while
a gradient recycling method has been proposed to enhance learning
performance in resource-limited wireless networks [14]. Similarly,
a federated policy evaluation problem where agents communicate
with a central aggregator over finite-capacity uplink channels using
a Bernoulli erasure model is investigated in [15]. Beyond FL, a risk-
aware decentralized control framework has been explored to manage
agent responsibility share, preventing collisions while maintaining
efficient movement without direct communications, in [16]. Finally,
a particularly promising approach is the decentralized over-the-air
MIMO FL method, which enables consensus among an increasing
number of nodes while dealing with bottlenecks associated with
network expansion [17].

This work addresses the uncertainty in distributed learning due
to unreliable networks, where this volatile nature of communication
links can impair node cooperation in diffusion-based techniques. We
propose two risk-aware DFL approaches leveraging the Conditional
Value-at-Risk (CVaR) measure, applied over the node distribution
[7], extending traditional CTA updates to enhance resilience against
communication uncertainties by focusing on the worst-case node
connections.
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II. PROBLEM SETUP

We consider a server-less federated learning setting, with coop-
erating nodes ¢ € [1,..., K] belonging to a network, described by
a graph G(K,&). With K we represent the set of the nodes, and
with £, we represent the communication links between the nodes.
Furthermore, the nodes communicate through a diffusion-based pro-
tocol, where each node first combines the received information from
its neighborhood N;, and then it adapts this combined information
based on its private dataset D;. For this work, we have focused on
the multi-class classification problem, where each node i € [K]
has a set of input vectors x € X C R and the corresponding
labels y € Y = {1,2,---,C}, where C is the total number of
classes (patterns). As a result the private dataset D;(z,y) := D;(€),
with NV; number of data. In the context of fully distributed federated
learning the nodes collaboratively minimize their local loss functions
l; : R®xY — R, exchanging the parameters of their parameterized
predlctors only with their neighbors. Let us also define the family

= {¢ : X x R% — R} of parameterized predictors with
parameter 0 € RY.

In the standard DFL the goal of the network would be to optimize
the consensus problem of the participating nodes finding the optimal
parameters 6 solving the risk-neutral problem

inf Ervx [Eevn, [L1(6(60))]], (M

0ER

whose empirical version reads as
K
1
inf i Li( ;0)) = —= i(0) ¢,
RS z K= s0) @

where p; = %, treating all nodes as equally important.

In this work, we want to capture a realistic network pathogenesis
that corresponds to the intermittent nodes availability. Thus, we
assume that the nodes communicate with each other through erasure
channels. The communication links of the network has a probability
to fail and as a result the transmitted information to be lost. To be
more precise, let p;; be the erasure probability with which the packet
fails to be received from node 4, sending by node [, and (1 — p;)
is the probability the packet to be received from node ¢. The packet
dropping processes are assumed to be independent of all other sources
of randomness [15].

For the rest of the paper, we assume that a fixed topology governed
by unreliable network connections (possible fading channels, MIMO
channels). Due to this network unreliability (link failures), nodes have
intermittent availability, which can lead to data scarcity across the
entire network. This issue becomes particularly difficult, in scenarios
characterized by strong data heterogeneity among nodes, where the
data distribution of node ¢, denoted as D;, is quite different from that
of node [, D;. In such cases, when network connectivity is poor, nodes
that rarely participate in the network fail to exchange information with
their neighbors. Consequently, the information of the data they hold
cannot be diffused in the network.

In other words, from an optimization perspective these infrequently
participating nodes may be treated as outliers in the risk-neutral
objective (2). However, these nodes contain valuable information
and should be considered as useful outliers. Theoretically, this
necessitates a risk measure over the node distribution that can
capture information from the tail of the skewed distribution, ensuring
that non-often available nodes contribute to the learning procedure.
Therefore, we assume that the network designer assigns to the nodes
of the network, to optimize a risk-sensitive objective to ensure that

the useful outliers will not be rejected. This technique is robust to
the worst-case link failures.

To achieve this, we adopt the Conditional Value-at-Risk (CVaR)
as our risk measure. As we will explain formally in (II-A) the
intrinsic property of CVaR is to focus on the worst-case events
(the tail of the skewed node distribution). This opposes the use of
expectation in (1), which is biased toward the central region where
the probability density is highest. By leveraging CVaR, we will have
a risk-aware version of the diffusion-based strategy (6), ensuring that
the decentralized federated learning framework remains sensitive to
the impact of rarely available nodes.

A. Proposed problem

Following the reasoning of [7] to guarantee efficient classification
and simultaneously mitigate the effect of data starvation, we use
a risk-aware objective, the Conditional Value-at-Risk (CVaR) on
the nodes distribution (3). The CVaR of a random variable Z at
confidence level @ € (0, 1] is defined as [!8]

CVaR®[Z] := inf {t + éE[(Z —t)4] } 3)

The hyper-parameter @ governs the behavior of CVaR. Specif-
ically, as o decreases, CVaR shifts further toward the tail of the
distribution. In the limiting condition lims—0 CVaR*[Z] asymptot-
ically approaches the essential supremum of Z (ess supZ). Con-
versely, as « increases, CVaR moves closer to expectation (formally,
CVaR®[Z] = E[Z], for a = 1) [18]. The parameter ¢ represents the
threshold beyond which the random variable Z is considered extreme.
Intuitively, the optimal ¢* is essentially the Value-at-Risk (VaR) of
Z, at confidence level o [18].

From the node viewpoint and by setting as the random variable Z
the empirical training loss f;(0) of the node ¢ the risk-aware problem
can be written as

n {CVaRa 0] = inf {¢+ EL£(6) - m}} -

0ERQ
s
6eR® tlng% {t+azpi[fi(9)t]+} = @
min

(Gt)ERQxRZpZ{t+ [.fz )_t]+}_

Since the positive part of (4) is by definition a non-differentiable
maximization operator we may substitute it with a smooth approxi-
mation [19] and the smoothed objective becomes

min =t = (fl( )t+10g(1+e(fi(9)t))>}.

(0.t GRQXRsz{
(5)

Following the CTA diffusion technique [4], each node i € [K]
employs steepest-descent iterations to minimize its local function
Gi(6,t). This process involves receiving parameters (91, t;) from its
neighborhood N;, and then utilizing step-sizes ng,nt for variables
(0,t), respectively, as follows

Ul = Nien, @i [0 = wF = nopiVeGi(47, AY)
AL = ZzeN,; it t?“ =\ _nthVt (AT
Cooperation Adaptation
(6)

For the above updates we have to assume that the neighborhood N;
will include always the node i itself. This assumption take place due
to the dynamic nature of the channel, which may result in the loss

1061



of all neighboring nodes [ € N;/{i} when transmitting to node i,
as illustrated in Fig. (1). Furthermore, we assume that there exist a
transition matrix A made by the coefficients a;; > 0 which represent
the weight the node ¢ assigns to the information receiving from the
node [. This matrix A is considered left-stochastic (174 = 17) [1].

1) Average-CVaR Approach: In our initial approach, we assume
that each node 4 receives a subset S; C N; of its neighborhood
N;, where |S;| denotes the cardinality of S;. Consequently, the
cooperation term in (6) averages the received parameters by assigning
weights a;; = ﬁ and the adaptation term retains its original form

using ng = ngpi, Nt = M pi as follows,

UF = Ve, @00 (00T = w0 —naVeGi(yp, AY)
M= e, oyttt = AT = VGl A7),

2) CVaR-CVaR Approach: Our second approach is motivated by
the equivalent definition of Conditional Value-at-Risk CVaR*[Z] of

a random variable Z, related with the Value-at-Risk VaR*[Z] [18],
we have that

@)

CVaR®[Z] = E[Z|Z > VaR"[Z]]. ®)

Intuitively, we can consider a more risk-sensitive cooperation tech-
nique in the expression (7), once each node i € K has received a set
of parameters {0;,%;};cs, and the corresponding empirical training
losses {fi(01)}ics,, then each node i € K can aggregate only the
parameters {6;,t; };cs, which correspond to the worst training losses
{f1(6:) }1es,. This cooperation technique can be justified from the
nature of the Conditional Value-at-Risk which is a risk measure that
reject the samples that do not exceed the Value-at-Risk of the random
variable. Mathematically, we have a set W; C S; C N such that

W; = {l : f1(0) > VaR®[fi(0)], for everyl € Si}, 9)

which corresponds to the worst training losses { f1(6:) }ies,. So, the
new risk-aware update becomes,

{w? =Yiew, w0 {ey*l

n — 1 4n n+1
A= Diew, wrtt (B

7

=1 —neVeGi(Yi', AT)
=N\ — VG (W], A7),

(10)
The risk-sensitive diffusion-based updates in (7),(10) serve as the
foundation for Algorithm of Table (I). The first branch of Algorithm
of Table (I) introduces a risk-sensitive modification to the traditional
Combine-then-Adapt diffusion technique. In each communication
round, the node i receives the parameters (6;,¢;),l € S; C N;. Then,
it combines these parameters assigning weight |SIT\ to each received
parameter. This term is subsequently used for adaptation, where mini-
batch-SGD updates are applied over multiple mini-batches of size b,
randomly selected from the private dataset D; to optimize the risk-
aware objective in (5). Furthermore, building upon the expression
(10) we implement the second branch of Algorithm of Table (I). In
this approach, we require each node broadcast not only its learnable
parameters but also the value of its training loss. This modification
is computationally inexpensive, as it involves transmitting only an
additional scalar value. Therefore, we can safely assume that the
additional network overload is minimal. Upon receiving the param-
eters (0y,t1, f1(01)),1 € S; C N;, node i sorts the empirical losses
f1(61),1 € S;, using the order statistics technique, and keeps only
the parameters (6;,t;) corresponding to empirical losses f;(6;) that
exceed the Value-at-Risk at level « (defined by the set W; in (9)).
Then it aggregates assigning weight Wlll to each parameter. Finally,
node ¢ uses the aggregated parameters to optimize the risk-sensitive
CTA update in (10).

TABLE I: Algorithm CVaR-CTA

Initialize 6} = ¢ and ¢t} =t , for all nodes i. Set K, E, T, H, a, b.
1: for each global round e € [1, ..., E] do

2: for each com. round n € [1,...,T] do

3: for node ¢ € [K] in parallel do

{

4: if Average-CVaR is applied then

5: S; + received subset of N;

6: Combine Step: using (7)

7: Adapt Step: using (7)

8: end if

. 7

9: if CVaR-CVaR is applied then
10: S; < received subset of N;
11: W, < Based on (9)
12: Combine Step: using (10)
13: Adapt Step: using (10)
14: end if

15: end for

16: end for

17: end for

18: procedure ADAPT(6;"" t5"™)

19: B <« split each D; into batches of size b

ae,n g,H
20: |:tén:| = té’H <— Update based on (7) or (10)
i i

21: end procedure

At this stage, it is important to highlight some critical aspects for
the two branches of Algorithm of Table (I). Notably, both versions
are reduced to the traditional CTA strategy when the parameter
o = 1. This follows from the fact that, as previously discussed, the
objective (4) simplifies to (2) when o« = 1. Secondly, as demonstrated
in the experimental results, the primary contribution of the risk-
sensitive objective lies in the cooperation mechanism. As a result,
the first version of Algorithm CVaR-CTA (I) which employs an
average aggregation cooperation technique is less effective than the
second version, which uses a CVaR-based selection scheme for the
cooperation step. Finally, it is worth noting that the second approach
introduces some computational challenges. Specifically, it relies on
computation of Value-at-Risk (VaR) (8), which correspond to the
upper a-quantile of the sorted list of the training losses. Exact
quantile computation may be impractical due to high computational
cost, particularly in networks with a large number of neighbors.
Lastly, this second approach may also face interpolation issues when
the desired quantile falls between discrete data points.

It is noted that, in the DFL literature there is widely employed also
the ATC diffusion-based technique. However, due to space limitation,
this work focuses exclusively on the CTA diffusion strategy and
its risk-sensitive extensions. Future extensions of this research will
explore the ATC protocol and its risk-aware variants.

B. Motivation Example

We now illustrate the fundamental difference between risk-neutral
and risk-aware DFL objectives. In the DFL framework, each node
i € [K] has access to information of its neighborhood N; [4].
Consequently, in the risk-neutral case (traditional CTA method), the
optimization problem (1) is formulated as the minimization of the cost
function Zf(zl fi(0), where f;(0) represents the local cost function
at node ¢ [20]. Since each node ¢ communicates exclusively with its
neighbors, we introduce the nonnegative coefficients c¢;; that define
the relationship between node 4 and its neighbors [ € A, satisfying
that c;; > 0, >,y ci = 1, and ci; = 0, if I ¢ N;. Using the
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Fig. 2: Mean Network Testing Accuracy for MNIST and FashionMNIST.
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Fig. 3: Line, Ring and Random Graph Topologles

coefficients c;;, we define a local cost function for each node [ € N,
as a weighted combination of the individual costs of its neighboring
nodes [20]. Specifically, f(8) = S°% | ¢ fi(9). Furthermore, the
cumulative sum of these local cost functions satisfies

>0 -3 (Z%)ﬁ S S0 = 3w

i=1 =1 i=1

S0+ > ),

I=1,Ii

1)

In the risk-aware setting (4), the optimization problem is formulated
as the minimization of 3.7  G(0,t). Consequently, the local cost
becomes as G (0,t) = S~ | ¢1;G(6,t). Moreover, the cumulative
sum of the risk-sensitive local cost functions satisfies the relationship

ZG ot loret+ZGlor

1=1,l#1%

With an appropriate choice of the hyper-parameter « (in (5)), it can
be shown that the positive part of the risk-aware objective in (5) is
activated only for the upper a-quantile of the empirical losses f;(6)
(for each fixed ) [7]. Therefore, the relation in (12) simplifies to the
expression (11) when o« = 1. However, for strictly positive and small
values of «, and for fixed values of 6 and ¢, (12) serves as a robust
generalization of (11) [21], [18].

III. CONVERGENCE ANALYSIS

We now describe a short sketch of the convergence of our proposed
Algorithm of Table (I). In the DFL literature, convergence analysis
involves two key steps [22]. The first step establishes that the
pair parameter of each node (67,t;') remains close enough to the
centroid pair model (A™,Z"). The second step demonstrates that
the distance error between the centroid pair model (6™,#") and the
optimal pair model (0*,t*) is upper bounded. Adopting a network-
based viewpoint, we stack the parameters (67,¢;') into matrices
©=[07,0%,...,0%" and T = [t7,t7,...,t%]". Furthermore, we
define the corresponding average matrices © = [™,0™,...,0™]7,
and T = [t",1",...,1"]7. Using this matrix notation [4], the CTA
update for the parameter 6 can be expressed as "1 = ATO" —
noVe G (AT@", ATT"), and for the parameter ¢ can be expressed as

12)

Tt = AT — th ¢ (AT@" ATT™). Moreover, we define the

consensus matrix J := K , which enables us to express the centroid
update as ©" = JO",T™ = JT™. Additionally, we introduce the
error terms DY := @™ — @™ and D} = T™ — T™. Furthermore, we
assume that there exist a mixing parameter 0 < r < 1 such that for a
left stochastic matrix A (and its Kronecker product A = A ® I) we
have ||(AT —JAT)D™| < r||D™||. Finally, assuming bounded gradi-
ents, ||VoG(ATO™, ATT™)|| < Co, |V:G(ATO™, ATT™)| < C4
and further mathematical manipulations, we obtain

105 |1+ D" < 20 (D3| + | DF|*) +2(mbCi + miC?)

(13)
For the second branch of Algorithm (I), the bound follows the same
structural form. However, the key difference lies in the parameter r,
where we now adopt a more robust choice, denoted as 7opus, along
with the corresponding constants Chopust,6, Crobust,t -

For the second step, we assume G;(0,t) is convexity and L-
smooth, with Lg, L: for 6 and t, respectively. We further assume
bounded gradient variances &g, 5¢, for both parameters. Building on
the results in [22], we obtain that

]E[Hé"Jrl _ 6,*”2 + (t‘n+1 _t*)Z] <.

1 - - -
+ (s +ma?) = 20 (GO, ) — G7) — 20 (G(, T

<o o) + w —ef

F% G
1 & _ 2
o> <L9"9”9” - Z aidf ||+ o “““ > (14)
2
Z <7)9L9 Z a0 — 0" +7]tL? Z at] —t" >
LeN; LeN;

4

+ }(’r]eLe + meLy) (G(G",fn) - é*)

Our convergence analysis demonstrates that network stability ensures
linear decay of consensus error across nodes. The optimality gap is
governed by the gradient noise and the step-sizes selection, revealing
a trade-off between the convergence speed and steady-state accuracy.
IV. EXPERIMENTAL RESULTS

Our experiments conducted on three distinct network topologies,
a line (5 nodes), a ring (20 nodes) and a random Erdos-Renyi
(20 nodes) graph (3). We assess the proposed Algorithm of Table
(D) using the MNIST and Fashion-MNIST datasets, where each
consists of 60.000 training samples across 10 distinct classes. The
experiments conducted with data heterogeneity O (strong non-i.i.d.)
for both datasets, in accordance with [23]. This data partitioning
strategy intentionally simulates network conditions where intermit-
tent connectivity contributes to localized data scarcity. The network
connectivity is modeled through two probability regimes, the fully
reliable (p;; = p = 1.0) with guaranteed neighbor transmission
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reception, and the unreliable (p;; = p = 0.3) where nodes retain
only 30% probability of receiving transmissions from neighbors,
excluding self-connections which remain consistently available. Each
experiment was simulated 10 times with mean testing accuracy over
the network of nodes measured after each epoch. The code for all
experiments is available at [24].

For MNIST results in Fig. [(2a), (2b)], global epochs are set as
E = 150 (line and ring topology), with I" = 6 inter-epoch communi-
cation rounds for neighbor information exchange. A neural network
with two fully connected hidden layers with neurons (200, 200) [25]
is implemented, using constant step-sizes my = 1, = 1072 for
Average-CVaR version of Algorithm of Table (I) and g = 1, = 10~*
for CVaR-CVaR branch, with H = 10 local iterations of batch
size b = 100 per user. As demonstrated in Fig. [(2a), (2b)] the
performance of traditional CTA techniques in a reliable network
setting (p = 1.0) exceeds the CTA techniques in an unreliable
network (p = 0.3) across both graph topologies. Specifically, for
both reliable (p = 1.0) and unreliable (p = 0.3) networks, the CVaR-
CVaR approach outperforms the Average-CVaR approach, which is
better than traditional CTA. Ultimately, the superior performance of
the proposed method is achieved for the CVaR-CVaR approach, high-
lighting the effectiveness of the risk-aware node selection version.

For FashionMNIST experiments in Fig. [(2c),(2d)] global epochs
are set as I2 = 300 for the ring and random graph topologies, with
T = 10 inter-epoch communication rounds for neighbor parameter
information exchange. A CNN architecture follows [25], using two
5 x 5 convolutional layers (with 6 and 16 channels, respectively,
each followed with 2 X 2 max pooling) and two fully connected
layers with 120 and 84 neurons. The local iterations, the batch size
and the step-sizes are fixed at H = 10,b = 100,79 = n; = 107>,
As illustrated, in this scenario in Fig. (2¢), both the traditional CTA
technique and the Average-CVaR approach fail to effectively solve
the problem in both reliable (p = 1.0) and unreliable (p = 0.3)
networks setting. However, the CVaR-CVaR version of Algorithm (I)
demonstrates improved performance, with the reliable network case
surpassing the performance of the unreliable network, as expected.
Finally, as shown in Fig. (2d), the CVaR-CVaR approach consistently
outperforms the Average-CVaR method, which in turn performs better
than the classic CTA procedure, in the random Erdos-Renyi graph
topology (2d), under the unreliable (p = 0.3) network setting.

V. CONCLUSION

In this study, we investigate Decentralized Fedeted Learning (DFL)
under limited node connectivity. We consider communication links as
erasure channels where each node broadcasts its model parameters,
however neighboring nodes receive these parameters with a low
probability. Under this setting, we proposed two risk-aware extensions
of the Combine-then-Adapt (CTA) technique. The first approach
aggregates the received parameters and optimizes the CVaR objective,
while the second approach selectively rejects a part of the received
parameters based on their CVaR behavior before adapting the risk-
sensitive function. Through experimental evaluation conducted on
Mnist and FashionMnist datasets, we demonstrate that the risk-
sensitive CTA approaches outperform the classic CTA technique,
particularly when employing risk-sensitive parameter selection.
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