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Abstract— Understanding how brain dynamics emerge from 

and are constrained by the underlying neuronal connectivity 

structure is a central question in neuroscience. Graph harmonic 

analysis has been used to quantify the coupling between the 

structural connectome and slow (0.01-1 Hz) brain activity 

fluctuations measured with functional magnetic resonance 

imaging (fMRI), revealing a macroscale gradient of the 

structure-function coupling that aligns with the unimodal-

transmodal cortical organization. Magnetoencephalography 

(MEG) yields access to millisecond-resolution brain dynamics, 

enabling the spectral characterization of fast (1-100 Hz) 

neuronal oscillations. Neuronal oscillations are fundamental for 

healthy brain function, providing a temporal clocking 

mechanism for neuronal communication. Yet, how the rich 

spatiotemporal patterns of oscillation dynamics are related to 

the brain's structural connectome has remained poorly 

understood. To address this knowledge gap, we implemented the 

graph harmonic analysis to investigate how MEG oscillatory 

activities are constrained by the structural connectome and to 

evaluate their similarities with fMRI. Our results demonstrate 

that graph harmonic analysis can be used to quantify frequency-

dependent MEG structure-function relationships. Furthermore, 

we show a partial similarity between MEG and fMRI imaging 

modalities and their relation to the structural network, 

particularly in neural oscillations between 10-20hz. This work 

characterizes how neural oscillations flow on top of the 

structural network. 

Keywords— Graph harmonic analysis, structure-function 

coupling, MEG, fMRI  

I. INTRODUCTION (HEADING 1) 

In neuroscience, the structure-function coupling (SFC) 
refers to the relationship between white matter structural 
pathways (i.e., the brain structural connectome (SC)) and the 
time-dependent activity of neural populations [1]. 
Investigating the SFC is of primary importance to 
understanding how functional brain networks emerge from the 
structural topology [2]. The SFC has been studied using 
different methods, including statistical models correlating 
functional and structural connectivity patterns, linear 

regression models predicting functional connectivity from a 
set of structural-derived predictors, and biophysical models 
simulating functional activity of structurally connected neural 
populations [1], [3]. In recent years, the SFC in the human 
brain has been investigated using graph signal processing 
(GSP) methods, in particular, graph harmonic analysis [4], [5]. 
In neuroscience, GSP is appealing due to the modeling of the 
macroscale brain structure as a graph (with brain regions 
representing graph nodes and their inter-areal structural 
connections representing graph edges), on top of which neural 
signals flow. Thus, GSP methods are particularly useful to 
resolve the relationship between brain structure and function. 
Here, using the eigendecomposition of the structural graph 
Laplacian, we decomposed neural functional activity as the 
linear combination of SC harmonics (Fig. 1) [5].  

Using graph harmonic analysis, neural activity is 
decomposed into two distinct components and indexed by the 
Structural Decoupling Index (SDI), a nodal measure 
quantifying the SFC [5]. The first component represents the 
portion of regional activity aligned with the structural 
connectome, henceforth referred to as 'coupled'. This coupled 
part indicates a similar activity pattern across structurally 
connected regions. The second component corresponds to the 
part of the signal exhibiting sharp variations between 
topological neighbors, henceforth termed 'decoupled’. The 
ratio of the decoupled to coupled signal components - the SDI 
- directly quantifies the degree of SFC of a brain region in 
terms of the amount of signal being (un)constrained by the SC 
[5], [6], [7]. Previous studies using graph harmonic analysis 
on fMRI data showed that the brain SFC is regionally 
heterogeneous, with stronger correspondence in unimodal 
(sensory) cortices and weaker correspondence in transmodal 
(associative) cortices [3], [5]. Compared to fMRI, 
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electrophysiological methods track neuronal activity with 
millisecond precision, allowing for the mapping of the spectral 
frequency content of neuronal signals. In humans, non-
invasive magneto- and electro-encephalography (M/EEG), 
especially MEG, when combined with source reconstruction, 
yields spatially precise information [8]. These data capture 
neuronal activity characterized by rhythmic excitability 
fluctuations—neuronal oscillations—which are abundant 
across the brain's hierarchy and spatiotemporal scales and are 
thought to play a fundamental role in the dynamic routing of 
neuronal signaling [9]. Yet, in contrast to fMRI, there is a 
scarce understanding of how oscillation dynamics emerge 
from the underlying brain structural connectome.  

In the present study, our aim was to analyze the SFC in the 
rich spectral dynamics of MEG data and its similarity to the 
SFC in fMRI. To do so, we implemented the graph harmonic 
decomposition using structural, hemodynamic, and 
electrophysiological data from N = 75 healthy participants. 
First, we filtered source-reconstructed MEG data into 
narrowband time series using 40 Morlet wavelets with center 
frequencies spanning between 1-96 Hz. Next, we assessed 
SFC across MEG frequencies and BOLD time courses from 
fMRI. Finally, we evaluated the correspondence in the SFC 
between MEG and fMRI (Fig. 1). Our findings suggested that 
the SFC in MEG is frequency-dependent and that the SFC 

observed in MEG and fMRI is also correlated in a frequency-
specific manner. 

II. METHODS  

A. Participants  

Brain structural and functional data were recorded from 75 
subjects (45 males, 29 females, 1 unreported gender) with a 
mean age of 31.89 years, ranging from 18 to 62 years. This 
study was conducted in accordance with the Declaration of 
Helsinki. All procedures were approved by the Ethical 
Committee of the Helsinki and Uusimaa Hospital District. All 
participants gave written informed consent before 
participating in the study.  

B. MRI acquisition and fMRI  

T1-weighted MRI diffusion-weighted imaging (DWI) and 
15-minute eyes-open resting state (RS) fMRI scans were 
obtained with a 3 Tesla MRI scanner (Magnetom Skyra, 
Siemens, Munich, Germany) at AMI Centre, Aalto 
University, using a 32-channel head coil. T1-weighted MRI 
was recorded using an MP-RAGE protocol with a resolution 
of 1×1×1. DWI data were recorded with a resolution of 
3.0×3.0×3.0 mm, repetition time of 4100 ms, and echo time of 
105 ms. Additionally, T2*-weighted images were obtained to 
optimize brain parcellation and co-registration. The fMRI 

 
Figure1. Workflow of decomposition of fMRI and MEG functional signals with respect to the structural network. The workflow is the same for both imaging 
modalities, but is implemented independently. Note that the lower part of B) and C) exemplified only one MEG frequency at 10 Hz. A) Structural and 

functional data modalities and Graph Fourier transform (GFT). For each time frame, the vector of the BOLD activity (top) or amplitude envelope (bottom) 

across brain regions was projected into the eigenvectors (graph harmonics, U) of the structural connectivity (SC) graph Laplacian (L) (middle), producing 

the Fourier coefficients of the signal. B) The graph power spectrum density (gPSD) plots show the spectral energy distribution across graph frequencies. A 
cut-off (dashed vertical line in gPSD plots) splitting the total energy across graph frequencies in half was used to split harmonics into low-frequency (LF) 

and high-frequency (HF) harmonics. C) Inverse graph Fourier transform (GFT-1) and structural decoupling index (SDI). By projecting the Fourier coefficients 

in LF or HF harmonics (low and high filters, respectively), it is possible to reconstruct the signal in two different components: one corresponding to the part 
of the signal that is constrained by the SC (coupled); the second corresponding to the part of the signal that is unconstrained by the SC (decoupled). The 

structural decoupling index (SDI) is the ratio between the norms across time of decoupled and coupled signals for each brain region. The SDI represents the 

coupling (blue nodes in brain plots) or decoupling (red nodes in brain plots) between a brain region and the SC. Finally, we correlated the fMRI and MEG 
frequency-specific SDI patterns. 
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measurements were taken with 3mm isometric resolution with 
a TR = 1.25 seconds and echo time = 30ms. 

Functional time courses were obtained after preprocessing 
with fMRIprep, which included slice-time correction, 
resampling onto native space, co-registration to the T1w 
reference, and nuisance regression (DVARS, white matter, 
CSF, and global signals). Component-based noise correction 
(CompCor), and high-pass filtering were also applied. Frames 
that exceeded a threshold of 0.5 mm FD or 1.5 standardized 
DVARS were annotated as motion outliers and regressed from 
the final time series. 

After preprocessing, subject-level BOLD time series for 
200 cortical brain regions from the Schaefer atlas were 
obtained and z-scored across time. 

C. MEG data acquisition, preprocessing, and source 

reconstruction 

15-minute eyes-open resting-state MEG data were 
recorded with 306-channel MEG (Megin Oy, Helsinki) either 
at BioMag laboratory in the Helsinki University Hospital or at 
MEG Core in Aalto University. Data preprocessing and 
source reconstruction were performed with the MNE-python 
software (https://mne.tools/stable/index.html) [10]. Temporal 
signal space separation (tSSS) was used to suppress 
extracranial noise from MEG sensors, interpolate bad 
channels, and compensate for head motions. Independent 
components analysis (ICA) was used to remove artifacts 
related to ocular, heartbeat, and muscle.  

MNE software was used for MEG–MRI colocalization 
and for preparing forward and inverse operators for source 
reconstruction. Noise covariance matrices (NCM) were 
obtained from preprocessed data filtered to 151 – 249 Hz. 
Source reconstruction was performed with minimum norm 
estimation (MNE) using dynamic statistical parametric maps 
(dSPM). The source models had dipole orientations fixed to 
pial-surface normals. Source vertices were collapsed into 200 
parcels of the Schaefer atlas by using fidelity-weighted 
collapsing operators. Broadband parcel time series were then 
filtered into narrowband time series by convolution with 40 
Morlet wavelets at center frequencies spanning from 2 to 96 
Hz in log-linear space. Node (parcel)-level oscillation 
amplitudes were z-scored across time for each frequency.  

D. Structural connectivity  

Subject-level structural connectomes (SC) were 
constructed from individual DWI data such that edges 
corresponded to the number of white matter connections 
between parcels of the Schaefer atlas. For subsequent analysis, 
a group-averaged SC was computed as the average of the 
subjects’ SC.   

E. Graph signal decomposition and structural decoupling 

index 

Brain regions' functional data (either BOLD activity or 
MEG frequency-specific amplitudes) were expressed as the 
weighted linear combination of the eigenvectors (also called 
graph harmonics, U) of the group structural connectivity graph 
Laplacian (L) (Fig. 1A). The graph eigenvectors are the analog 
in a graph of the Fourier basis in classical signal processing. 
Therefore, the graph Fourier transform (GFT) of the signal 
produces the graph Fourier coefficients associated with each 
harmonic: 

 x̂(t)=UTx(t) (1) 

 

The total amount of energy in each graph frequency (Fig. 
1B, see graph power spectrum density (gPSD) plots) 
corresponds to the square of its Fourier coefficient averaged 
across time. A subject-specific cut-off splitting the total 
energy across graph frequencies in half was used to divide the 
harmonics into two sets [5]. Graph harmonics below the cut-
off represent global patterns of smooth variation across 
topological neighbors and were labeled low-frequency (LF) 
harmonics. Complementary, high-frequency (HF) harmonics, 
above the cut-off, denote sharp variation across neighbors. LF 
and HF harmonics were used as spectral filters UL  and UH  
(Fig. 1C).  UL  corresponds to a matrix with the same 
dimensions as U,  retaining LF harmonics and zeros 
everywhere else, and  UH corresponds to a matrix with only 
HF harmonics and zeros everywhere else (Fig. 1C). By 
multiplying the Fourier coefficients with these spectral filters 
(inverse graph Fourier transform), we obtained, in the spatial 
domain, the coupled and decoupled components of the 
original signal, such as: 

 xc(t)=ULx̂(t) (2) 

 xd(t)=UHx̂(t) (3) 

 

Then, the structural decoupling index (SDI) was computed 
for each brain region as the ratio between the  l2- norm across 
time of  xd  and xc  (Fig. 1C) [5]. This metric quantifies the 
(de)coupling between the regional activity and the underlying 
SC. For visualization purposes, SDI values are log2 
transformed, so negative values are associated with a higher 
SFC, and positive values with a lower SFC. 

F. Statistical analysis  

To estimate the significance of our results, we created two 
types of surrogate data [5] [11]. First, to test the significance 
of the whole-brain frequency-dependent pattern of SDI (see 
result section ‘Structure-function coupling in MEG’), we 
compared the parcel-level SDI values with those of 100 
surrogates, which were generated by shuffling the signs of the 
brain harmonics with their respective Fourier coefficients. 
This allowed for the comparison of observed SDI values 
against the SDI from surrogate signals with an altered 
structure-function relationship, but the same energy 
distribution across harmonics as the observed signal.  

Second, to assess the significance of the SDI frequency-
dependent correlation pattern between MEG-frequencies and 
fMRI (see result section ‘SDI correlation fMRI-MEG’), we 
compared the observed fMRI-MEG SDI correlation with the 
correlation between observed MEG SDI and a 1000 surrogates 
fMRI SDI obtained from the projection of the observed fMRI 
signal in a randomized structural connectome [11]. By 
correlating these surrogates with the observed SDI values in 
MEG, we assessed whether the observed fMRI-MEG 
correlation was explained by a trivial correspondence between 
MEG amplitude and BOLD signals.  
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III. RESULTS  

A. Structure-function coupling in fMRI 

Across participants, the cut-off splitting harmonics in low-
frequency (LF) and high-frequency HF ranged from 25 to 42 
(median value across participants = 35), corroborating that the 
graph spectral energy distribution in fMRI is higher in LF 
compared to HF harmonics [5]. In fMRI, we found that the 
negative SDI values corresponding to the strongest SFC were 
in parcels of the visual and somatomotor networks. 
Conversely, positive SDI values corresponding to the 
decoupled regions were primarily found in parcels of the 
control, dorsal, and ventral attention networks, while the 
default mode network appeared halfway between coupling 
and decoupling (Fig. 2A).  

B. Structure-function coupling in MEG 

In the MEG data, the cut-off splitting harmonics in LF and 
HF varied across frequencies and subjects (Fig. 2B). At lower 
MEG frequencies, from the delta to theta bands (1–7 Hz), the 
median cut-off across subjects gradually decreased from 67 to 
57. It reached a minimum value of 53 in the low alpha band 
(8–12 Hz), then increased progressively in the beta band (13–
30 Hz) from 55 to 68. Finally, it reached a plateau in the 
gamma band (40–96 Hz) with a cut-off equal to 73. 

The negative SDI values corresponding to the coupled 
areas were widespread over the cortex, particularly in 
somatomotor and visual networks, while the positive SDI 
values corresponding to decoupled areas were found mostly in 
the prefrontal cortex (Fig. 2C). The parcel-SDI values across 
MEG frequencies were highly correlated (Spearman 
correlation test, mean across frequencies r = 0.89), except for 
alpha frequency (8-12Hz) in which the correlations with other 
frequencies were relatively smaller but still significant (Fig. 
2D). 

To assess the whole-brain tendency of MEG oscillations 
to be coupled or decoupled with the SC, the SDI was averaged 
across parcels, showing that MEG activity across frequencies 
tend to be coupled with the SC (Fig. 2E). Furthermore, similar 
to the cut-off values distribution across frequencies, the 
whole-brain SDI showed a peak in the alpha band, 
corresponding to a higher global coupling in the brain (peak 
in negative SDI) compared to other MEG frequencies. The 
whole-brain decoupling was significantly different from the 
surrogate data, specifically between 10-20 Hz (Fig. 2E) (see 
methods). Importantly, our results are unlikely to be explained 
by the higher power in the alpha band since time-course 
amplitudes were z-scored across time, thereby normalizing the 
power across MEG frequencies. Furthermore, the absence of 
alpha peaks in surrogate signals indicates a genuine specificity 
of SFC in the alpha frequency band. 

C. Correlation of SDI between fMRI and MEG 

To assess the correspondence between the SFC across 
brain imaging modalities, we computed the correlation 
between the fMRI and MEG frequencies of the parcel-level 
SDI values (Fig. 3A). The correlation values were stronger 
compared to the surrogate data for all frequencies. Moreover, 
the correlation peaked in the alpha band, which had the lowest 
SDI values, i.e., the strongest coupling (r = 0.28 at 10 Hz). 
When detailing the parcel-level characteristics in the 
correlation of SDI values between 10 Hz and BOLD, we 
found a strong average correlation (r = 0.53), with a higher 

correspondence in unimodal regions, including visual and 
somatomotor networks (Fig. 3B). 

IV. DISCUSSION 

 
In the present study, using graph harmonic decomposition, 

we investigated the SFC in fMRI and MEG in terms of the 
smoothness of hemodynamic or electrophysiological brain 
activity on top of the structural network. To quantify the SFC, 
we used the structural decoupling index (SDI) [5], which 
assesses whether brain signals (in the present work either 
BOLD activity or brain oscillations) change progressively 
(coupled), contrary to sharply (decoupled) across structurally 
connected brain regions. 

Our findings reveal how the rich spectrotemporal patterns 
of MEG data relate to the SC in a frequency-specific manner. 
The lowest cut-off values across frequencies were observed in 
the alpha band, with LF harmonics exhibiting more energy 
than HF harmonics, suggesting a tendency for alpha 
oscillations to be more constrained by the SC. This was 
paralleled by a negative peak at around 10 Hz in the whole-
brain SDI and a significant SFC from 10-26 Hz, 
demonstrating higher SFC in the alpha-beta frequencies 
compared to other frequency bands. 

 

 
 

Figure 2. Structural decoupling index (SDI) in fMRI and MEG. A) The 

cortical pattern of fMRI SDI values in the 200 parcels of the Schaefer 

atlas. SDI values are log2 transformed, so blue corresponds to coupling 

and red to decoupling. B) Cut-off values across MEG frequencies 
splitting the total spectral energy across harmonics in half. C) SDI 

pattern across brain parcels for the MEG frequency with the lowest 

cutoff (10Hz). D) Spearman correlation across MEG frequency bands 
for parcel-level SDI values. E) Whole-brain average over 200 parcels 

of the log2 transformed SDI values across MEG frequency bands. The 

blue line indicates the observed SDI value from N = 75 participants, 
and the red dashed line indicates the mean SDI across surrogates 

(SDI_sur_MEG). Shaded areas represent 95% confidence intervals. 
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This is in partial accordance with previous investigations 
examining the global similarity between SC and MEG 
frequencies, which showed higher correspondence between 
the SC and the beta band functional network [12], [13]. Here, 
we found a higher SFC (negative SDI) in the high-alpha to 
beta frequency range (10-26 Hz). Methodological differences 
to compute the whole-brain SFC could explain the 
discrepancy in the results. In this study, we measured SFC 
based on the smoothness of the signal across topological 
neighbors rather than calculating the correlation between 
structural and functional connectivity matrices, as in [12] and 
[13]. Furthermore, as shown in previous implementations of 
GSP on electrophysiological data, the SDI pattern across brain 
regions was highly similar across MEG frequency bands [7], 
[14], indicating that the specificity in alpha is due to an 
increased magnitude in the SFC across brain regions. The 
highest SFC in the alpha-beta band is intriguing since decades 
of research have associated these oscillations with global brain 
resting rhythms [15].  

Consistent with the frequency-dependent SFC results, 
MEG SDI in the 10–20 Hz range showed the strongest 
correlation with fMRI SDI. This indicates that both BOLD 
activity and MEG amplitude in the alpha-beta band are 
similarly influenced by the underlying structural network. 
These results are in line with previous investigations 
correlating fMRI and MEG functional connectivity matrices  
[13], [16]. Importantly, the overall low correlation values in 
our results indicate that even though there are similarities in 
the SFC between fMRI and MEG signals, a large part of these 
signals arises via independent mechanisms, which is expected 

given the different nature of the brain signals (hemodynamic 
vs. neural activity).  

In summary, we employed graph signal processing to 
investigate the SFC, utilizing graph harmonic analysis in 
MEG and fMRI data recorded from the same participants. Our 
results highlight a particular trimodal correspondence between 
oscillations in the alpha-to-beta band, BOLD activity, and the 
structural connectome. 
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Figure 3.  A) Correlation of the parcel-level SDI values between fMRI 
and MEG frequencies showing a significant correlation between 1-20 

Hz. The blue line indicates the average correlation across subjects for 

each MEG frequency, and the green dashed line corresponds to the 
surrogate mean SDI obtained from the projection of the observed fMRI 

signal in a randomized structural connectome. Shaded areas represent 

95% confidence intervals. B) Parcel-level SDI correlation between fMRI 
and MEG at 10Hz. Nodes are colored according to the Yeo 7 Networks.  
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